已知橢圓過點(diǎn)
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)且斜率為
(
)的直線
與橢圓
相交于
兩點(diǎn),直線
、
分別交直線
于
、
兩點(diǎn),線段
的中點(diǎn)為
.記直線
的斜率為
,求證:
為定值.
(Ⅰ);(Ⅱ)
解析試題分析:(Ⅰ)根據(jù)條件可得以下方程組: ,解這個(gè)方程組求出
、
的值便得橢圓的方程;(Ⅱ)將
用
表示出來,這樣
就是一個(gè)只含
的式子,將該式化簡即可.那么如何用
來表示
?
設(shè),
.因?yàn)锳(2,0),所以直線
的方程分別為:
.
令得:
所以
的中點(diǎn)為:
由此得直線的斜率為:
①
再設(shè)直線的方程為
,代入橢圓方程
得:
設(shè),
,則由韋達(dá)定理得:
代入①式,便可將
用
表示出來,從而得到
的值.
試題解析:(Ⅰ)由題設(shè): ,解之得
,所以橢圓
的方程為
4分
(Ⅱ)設(shè)直線的方程為
代入橢圓方程
得:
設(shè),
,則由韋達(dá)定理得:
直線的方程分別為:
令,得:
所以
13分
考點(diǎn):1、橢圓及其方程;2、直線的方程;3、中點(diǎn)坐標(biāo)公式;4、根與系數(shù)的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
.
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn)
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點(diǎn)
若拋物線上一點(diǎn)
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線
有公共焦點(diǎn)
,點(diǎn)
是曲線
在第一象限的交點(diǎn),且
.
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點(diǎn)
為圓心的圓
與直線
相切,圓
:
.過點(diǎn)
作互相垂直且分別與圓
、圓
相交的直線
和
,設(shè)
被圓
截得的弦長為
,
被圓
截得的弦長為
,問:
是否為定值?如果是,請求出這個(gè)定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線:
與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且
,
,四邊形
面積S的求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,橢圓的短軸端點(diǎn)與雙曲線
的焦點(diǎn)重合,過點(diǎn)
且不垂直于
軸直線
與橢圓
相交于
、
兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,動點(diǎn)
到兩點(diǎn)
,
的距離之和等于4,設(shè)點(diǎn)
的軌跡為曲線C,直線過點(diǎn)
且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:,離心率為
,焦點(diǎn)
過
的直線交橢圓于
兩點(diǎn),且
的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點(diǎn)P(0,m)(m
0),與橢圓C交于相異兩點(diǎn)A,B且
.若
,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=
+
成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com