日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為。一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的焦點(diǎn)分別為A、B和C、D。

          (1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程

          (2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

          (3)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?

          若存在,求的值,若不存在,請(qǐng)說(shuō)明理由。

           

          【答案】

          (Ⅰ)由題意知,橢圓離心率為,得,又,得,所以所以橢圓的標(biāo)準(zhǔn)方程為;  ……2

          所以橢圓的焦點(diǎn)坐標(biāo)為(,0),因?yàn)殡p曲線為等軸雙曲線,且頂點(diǎn)是該橢圓的焦點(diǎn),

          所以該雙曲線的標(biāo)準(zhǔn)方程為。        …………4

          (Ⅱ)設(shè)點(diǎn)P(,),==,∴=…6

          點(diǎn)P(,)在雙上,有,即,∴=1  ……8

          (Ⅲ)假設(shè)存在常數(shù),使得恒成立,則由(Ⅱ)知,所以設(shè)直線AB的方程為,則直線CD的方程為,

          由方程組消y得:,設(shè),

          則由韋達(dá)定理得:     ……………9

          所以|AB|==,同理可得     ……………10

          |CD|===,  …………11

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052205381298434417/SYS201205220539554531331131_DA.files/image024.png">,

          所以有=+=,

          所以存在常數(shù),成立。 

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿(mǎn)分12分)

          如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)直線的斜率分別為、,證明;

          (Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿(mǎn)分13分)

            如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的

            左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢

            圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)

            分別 為

             (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程; 

             (Ⅱ)設(shè)直線、的斜率分別為、,證明;

             (Ⅲ)是否存在常數(shù),使得恒成立?

                若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

                                                                       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿(mǎn)分12分)如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)直線的斜率分別為,證明

          (Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)平行于的直線軸上的截距為與橢圓有A、B兩個(gè)

          不同的交點(diǎn)

             (Ⅰ) 求橢圓的方程;

              (Ⅱ)  求的取值范圍;                              

             (III)求證:直線軸始終圍成一個(gè)等腰三角形.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆度黑龍江龍東地區(qū)第一學(xué)期高二期末理科數(shù)學(xué)試卷 題型:解答題

          如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為。一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的焦點(diǎn)分別為A、B和C、D。

          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程

          (Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

          (Ⅲ)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,請(qǐng)說(shuō)明理由。

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案