日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y2=4a(x+a)(a>0),過原點O作一直線交拋物線于A、B兩點,如圖所示,試求|OA|·|OB|的最小值。
          解:設(shè)直線AB的參數(shù)方程為(t為參數(shù))
          代入y2=4a(x+a)中得:t2sin2α-4atcosα-4a2=0
          ∴|OA||OB|=|t1t2|=
          時,|OA||OB|取最小值
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
          2
          ,過拋物線C1的焦點F作傾斜角為
          π
          4
          的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
          (1)求點P和Q的坐標;
          (2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2003•東城區(qū)二模)已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
          2
          ,過拋物線C1的焦點F作傾斜角為
          π
          4
          的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
          (Ⅰ)求點P和Q的坐標;
          (Ⅱ)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程;
          (Ⅲ)設(shè)點A(t,0)(常數(shù)t>4),當a在閉區(qū)間〔1,2〕內(nèi)變化時,求△APQ面積的最大值,并求相應(yīng)a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
          2
          ,過拋物線C1的焦點F作傾斜角為
          π
          4
          的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
          (1)求點P和Q的坐標;
          (2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2006年高考第一輪復(fù)習數(shù)學:8.3 拋物線(解析版) 題型:解答題

          已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為,過拋物線C1的焦點F作傾斜角為的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
          (1)求點P和Q的坐標;
          (2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

          查看答案和解析>>

          同步練習冊答案