日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx-ax.
          (Ⅰ)求函數(shù)f(x)的極值,
          (Ⅱ)已知過點(diǎn)P(1,f(1)),Q(e,f(e))的直線為l,則必存在x0∈(1,e),使曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線l平行,求x0的值,
          (Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.
          (Ⅰ)f'(x)=
          1
          x
          -a=
          1-ax
          x
          (x>0)
          ①若a≤0,f'(x)>0,f(x)在(0,+∞)上單調(diào)遞增,此時f(x)不存在極值.
          ②若a>0令f'(x)=0得x=
          1
          a
          ,
          當(dāng)x∈(0,
          1
          a
          )
          時,f(x)>0,此時函數(shù)f(x)在此區(qū)間上單調(diào)遞增;
          當(dāng)x∈(
          1
          a
          ,+∞)
          時,f(x)<0,此時函數(shù)f(x)在此區(qū)間上單調(diào)遞減;
          ∴f(x)極大值=f(
          1
          a
          )=-lna-1

          綜上:當(dāng)a≤0時,f(x)沒有極大值,當(dāng)a>0時,f(x)極大值=-lna-1.
          (Ⅱ)直線l的斜率k=
          f(e)-f(1)
          e-1
          =-a+
          1
          e-1
          ,
          ∵x0∈(1,e),
          依題意有f'(x0)=-a+
          1
          e-1
          1
          x0
          -a=-a+
          1
          e-1

          得x0=e-1∈(1,e),
          故x0=e-1
          (Ⅲ)①f'(x0)=
          f(b)-f(a)
          b-a
          (
          f(a)-f(b)
          a-b
          )

          由以上結(jié)論得:對區(qū)間[0,x]存在x1∈[0,x]使g'(x1)=
          g(x)-g(0)
          x-0

          同樣對區(qū)間[x,1]存在x2∈[x,1]使g'(x2)=
          g(1)-g(x)
          1-x
          =
          -g(x)
          1-x

          依題意得:g'(x1)>g'(x2)即
          g(x)-g(0)
          x-0
          -g(x)
          1-x

          化簡得g(x)>g(0)(1-x)成立.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時,函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案