【題目】分形幾何學是數(shù)學家伯努瓦曼德爾布羅在20世紀70年代創(chuàng)立的一門新的數(shù)學學科.它的創(chuàng)立為解決傳統(tǒng)科學眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個樹形圖:
易知第三行有白圈5個,黑圈4個.我們采用“坐標”來表示各行中的白圈、黑圈的個數(shù).比如第一行記為,第二行記為
,第三行記為
.照此規(guī)律,第
行中的白圈、黑圈的“坐標”為
,則
________.
【答案】1
【解析】
根據(jù)圖甲所示的分形規(guī)律,1個白圈分形為2個白圈1個黑圈,1個黑圈分形為1個白圈2個黑圈,根據(jù)第三行的數(shù)據(jù)可求出第四行的“坐標”;再根據(jù)前五行的白圈數(shù)乘以2,分別是2,4,10,28,82,即,
,
,
,
,可歸納第
行的白圈數(shù),黑圈數(shù),即可得出結(jié)論.
根據(jù)圖甲所示的分形規(guī)律,1個白圈分形為2個白圈1個黑圈,1個黑圈分形為1個白圈2個黑圈,
第一行記為,第二行記為
,第三行記為
,第四行的白圈數(shù)為
;黑圈數(shù)為
,
∴第四行的“坐標”為;
第五行的“坐標”為,
各行白圈數(shù)乘以2,分別是2,4,10,28,82,即,
,
,
,
,
∴第行的白圈數(shù)為
,黑圈數(shù)為
,
∴.
故答案為:1.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),如果存在實數(shù)
(
,且
不同時成立),使得
對
恒成立,則稱函數(shù)
為“
映像函數(shù)”.
(1)判斷函數(shù)是否是“
映像函數(shù)”,如果是,請求出相應的
的值,若不是,請說明理由;
(2)已知函數(shù)是定義在
上的“
映像函數(shù)”,且當
時,
.求函數(shù)
(
)的反函數(shù);
(3)在(2)的條件下,試構(gòu)造一個數(shù)列,使得當
時,
,并求
時,函數(shù)
的解析式,及
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,給定
個整點
,其中
.
(Ⅰ)當時,從上面的
個整點中任取兩個不同的整點
,求
的所有可能值;
(Ⅱ)從上面個整點中任取
個不同的整點,
.
(i)證明:存在互不相同的四個整點,滿足
,
;
(ii)證明:存在互不相同的四個整點,滿足
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護環(huán)境,污水需經(jīng)處理才能排放.兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據(jù)經(jīng)驗公式,建廠的費用為
(萬元),
表示污水流量;鋪設(shè)管道的費用(包括管道費)
(萬元),
表示輸送污水管道的長度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為
、
,
、
兩城鎮(zhèn)連接污水處理廠的管道總長為
千米.假定:經(jīng)管道輸送的污水流量不發(fā)生改變,污水經(jīng)處理后直接排入河中.請解答下列問題(結(jié)果精確到
):
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費用
與
的函數(shù)關(guān)系式,并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為
,過橢圓E的左焦點
且與x軸垂直的直線與橢圓E相交于的P,Q兩點,O為坐標原點,
的面積為
.
(1)求橢圓E的方程;
(2)點M,N為橢圓E上不同兩點,若,求證:
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),且
,對于任意的
,均有
,
.
(1)求證:是等比數(shù)列,并求出
的通項公式;
(2)若數(shù)列中去掉
的項后,余下的項組成數(shù)列
,求
;
(3)設(shè),數(shù)列
的前
項和為
,是否存在正整數(shù)
,使得
、
、
成等比數(shù)列,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示
中較大者,記函數(shù)
.若函數(shù)
在
上恰有2個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為( 。
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com