設(shè)雙曲線以橢圓
的兩個(gè)焦點(diǎn)為焦點(diǎn),且雙曲線
的一條漸近線是
,
(1)求雙曲線的方程;
(2)若直線與雙曲線
交于不同兩點(diǎn)
,且
都在以
為圓心的圓上,求實(shí)數(shù)
的取值范圍.
(1);(2)
解析試題分析:(1)雙曲線和橢圓
共焦點(diǎn),故可設(shè)其方程為
,且
,
,聯(lián)立解
;(2)直線和圓錐曲線的位置關(guān)系問題,一般根據(jù)已知條件結(jié)合韋達(dá)定理列方程來確定參數(shù)的值或取值范圍,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/5/11dlk4.png" style="vertical-align:middle;" />在以
為圓心的圓上,根據(jù)垂徑定理,連接圓心和弦
的中點(diǎn)的直線必垂直于
,∴將直線和雙曲線聯(lián)立,得關(guān)于
的一元二次方程且
,得關(guān)于
的不等式,利用韋達(dá)定理確定弦
的中點(diǎn)
坐標(biāo),利用
列式,得關(guān)于
的方程,與不等式聯(lián)立消去
,得關(guān)于
的不等式,解之可得.
試題解析:(1)依題雙曲線的兩個(gè)焦點(diǎn)分別為
、
,
,又雙曲線
的一條漸近線是
,
,
雙曲線
的方程為:
;
(2)設(shè),
,
由,消去
整理得:
,依題意得
(*),設(shè)
的中點(diǎn)為
,則
,
又點(diǎn)
在直線
上,
,
,
兩點(diǎn)都在以
為圓心的同一圓上,
,即
,
,整理得
,代人(*)式得:
解得:
或
,
又,
,故所求
的取值范圍是
.
考點(diǎn):1、橢圓和雙曲線的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì);2、垂徑定理;3、韋達(dá)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為
的橢圓E的一個(gè)焦點(diǎn)為圓
的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為的直線
,當(dāng)直線
都與圓
相切時(shí),求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線:
.過點(diǎn)
的直線
交
于
兩點(diǎn).拋物線
在點(diǎn)
處的切線與在點(diǎn)
處的切線交于點(diǎn)
.
(Ⅰ)若直線的斜率為1,求
;
(Ⅱ)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)是
,一條漸近線的方程是
。
(1)求雙曲線的方程;
(2)若以為斜率的直線
與雙曲線
相交于兩個(gè)不同的點(diǎn)
,且線段
的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別是
,離心率
,
為橢圓上任一點(diǎn),且
的最大面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線
交橢圓
于
兩點(diǎn),且以
為直徑的圓恒過原點(diǎn)
,若實(shí)數(shù)
滿足條件
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點(diǎn)為圓心、橢圓
的短半軸長(zhǎng)為半徑的圓
相切.
(1)求橢圓的方程;
(2)如圖,、
、
是橢圓
的頂點(diǎn),
是橢圓
上除頂點(diǎn)外的任意點(diǎn),直線
交
軸于點(diǎn)
,直線
交
于點(diǎn)
,設(shè)
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為
,其準(zhǔn)線與
軸的交點(diǎn)為
,過
點(diǎn)的直線
交拋物線于
兩點(diǎn).
(1)若直線的斜率為
,求證:
;
(2)設(shè)直線的斜率分別為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(
)右頂點(diǎn)與右焦點(diǎn)的距離為
,短軸長(zhǎng)為
.
(I)求橢圓的方程;
(II)過左焦點(diǎn)的直線與橢圓分別交于
、
兩點(diǎn),若三角形
的面積為
,求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com