日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,平面,分別是的中點(diǎn),,.

          (1)求二面角的余弦值;

          (2)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線所成的角最小時(shí),求線段的長(zhǎng).

          【答案】(1);(2)

          【解析】

          試題分析:先利用所給的垂直關(guān)系建立適當(dāng)?shù)目臻g直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)(1判定是平面的一個(gè)法向量,求出平面一個(gè)法向量,利用平面的法向量求二面角的余弦值;(2)先利用三點(diǎn)共線設(shè)出點(diǎn)的坐標(biāo),利用空間向量的夾角公式得到函數(shù)關(guān)系式,利用二次函數(shù)求其最值.

          試題解析:為正交基底建立空間直角坐標(biāo)系,

          則各點(diǎn)的坐標(biāo)為,,

          )因?yàn)?/span>平面,所以是平面的一個(gè)法向量,.因?yàn)?/span>,

          設(shè)平面的法向量為,則,,

          ,解得

          所以是平面的一個(gè)法向量. 從而

          所以二面角的余弦值為

          )因?yàn)?/span>,設(shè)

          ,則,

          從而

          設(shè),

          當(dāng)且僅當(dāng),即時(shí),的最大值為.

          因?yàn)?/span>上是減函數(shù),此時(shí)直線所成角取得最小值.

          又因?yàn)?/span>,所以

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
          (I)求證:平面PDE⊥平面PAC;
          (Ⅱ)求直線PC與平面PDE所成的角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若的極值點(diǎn),求的極大值;

          (2)求實(shí)數(shù)的范圍,使得恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時(shí), >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),則a,b,c的大小關(guān)系正確的是(
          A.a<c<b
          B.b<c<a
          C.a<b<c
          D.c<a<b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過(guò)點(diǎn)D(2,0).
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)點(diǎn) ,若P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知.

          I)討論的單調(diào)性;

          II)當(dāng)有最大值,且最大值大于時(shí),a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法正確的是( ).

          A. ,“”是“”的必要不充分條件

          B. 為真命題”是“為真命題” 的必要不充分條件

          C. 命題“,使得”的否定是:“

          D. 命題:“”,則是真命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】⊙O1和⊙O2的極坐標(biāo)方程分別為ρ=4coθ,ρ=﹣sinθ.
          (1)把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (2)求經(jīng)過(guò)⊙O1 , ⊙O2交點(diǎn)的直線的極坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

          租用單車數(shù)量(千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本(元)

          3.2

          2.4

          2

          1.9

          1.7

          根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

          (1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

          ①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

          租用單車數(shù)量 (千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本 (元)

          3.2

          2.4

          2

          1.9

          1.7

          模型甲

          估計(jì)值

          2.4

          2.1

          1.6

          殘差

          0

          -0.1

          0.1

          模型乙

          估計(jì)值

          2.3

          2

          1.9

          殘差

          0.1

          0

          0

          ②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

          (2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案