日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正方形ABCD的邊長是4,對角線AC與BD交于O.將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
          3
          4
          ,則其中的真命題是( 。
          分析:由題意,作出如圖的圖象,由正方形的性質(zhì)知,CO⊥BD,AO⊥BD,可得BD⊥面AOC,且AC=AO=CO=2
          2
          ,AD=CD=4,可由線面垂直判斷AC⊥BD,AD⊥CO可反證確定它不成立,③可由正三角形的性質(zhì)判斷,④可由余弦定理直接求出cos∠ADC=
          3
          4
          ,由此可選出正確答案.
          解答:解:由題意,可作出如圖的圖象,在下圖中,由正方形的性質(zhì)知,CO⊥BD,AO⊥BD,故可得BD⊥面AOC
          由此可得出BD⊥AC,∠AOC=60°,故①正確,
          又由題設(shè)條件O是正方形對角線的交點,可得出AO=CO,于是有③△AOC為正三角形,可得③正確;
          由上證知,CO與面ABD不垂直且CO⊥BD,故AD與CO不垂直,由此知②不正確;
          由上證知,△AOC是等邊三角形,故AC=AO=CO=2
          2
          ,AD=CD=4,所以cos∠ADC=
          16+16-8
          2×4×4
          =
          3
          4
          故④正確
          由上判斷知:①③④正確.
          故選:D.
          點評:本題考查與二面角有關(guān)的綜合問題,考查了線面垂直,面面角的平面的確定等問題,這是一個翻折問題,此類問題理解翻折過程中的變與不變是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設(shè)PA⊥平面ABCD,且PA=2,CE=1,
          (1)求證:面PAD∥面BCE.
          (2)求PO與平面PAD所成角的正弦.
          (3)求二面角P-EB-C的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
          3
          4
          ,則其中的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長為1,設(shè)
          AB
          =
          a
          ,
          BC
          =
          b
          ,
          AC
          =
          c
          ,則|
          a
          -
          b
          +
          c
          |等于( 。
          A、0
          B、
          2
          C、2
          D、2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正方形ABCD的邊長為
          2
          ,
          AB
          =
          a
          ,
          BC
          =
          b
          ,
          AC
          =
          c
          ,則|
          a
          +
          b
          +
          c
          |
          =
          4
          4

          查看答案和解析>>