日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=|4-x2|,若0<m<n,且f(m)=f(n),則m+n的取值范圍是( 。
          A、(0,4)
          B、(2
          2
          ,4)
          C、(0,2
          2
          D、(
          2
          ,4)
          分析:由題意f(x)=|4-x2|屬于含絕對值的函數(shù),利用絕對值的定義通過分類討論的思想把絕對值脫去,轉(zhuǎn)化為二次函數(shù)進(jìn)行求解即可.
          解答:精英家教網(wǎng)解:y=f(x)=|4-x2|的圖象如圖.
          ∵0<m<n,f(m)=f(n),
          ∴0<m<2,n>2.
          ∴4-m2=n2-4,即m2+n2=8.
          m2+n2=8
          0<m<2
          n>2.

          精英家教網(wǎng)∴點(m,n)軌跡為以(0,0)為圓心,以2
          2
          為半徑的圓的一部分,如圖
          AB

          設(shè)z=m+n,由線性規(guī)劃知點Z為斜率為-1的直線與
          AB
          有公共點時在y軸上的截距,
          ∴直線過(0,2
          2
          )時,zmin=2
          2
          ,過點(2,2)時,zmax=4.∴z∈(2
          2
          ,4).
          點評:此題考查了利用絕對值的定義脫去絕對值,二次函數(shù)的對稱性,動點的軌跡方程及利用數(shù)形結(jié)合的思想求解式子的最大值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          14、某同學(xué)在借助計算器求“方程lgx=2-x的近似解(精確到0.1)”時,設(shè)f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下過程中,他用“二分法”又取了4個x的值,計算了其函數(shù)值的正負(fù),并得出判斷:方程的近似解是x≈1.8.那么他再取的x的4個值分別依次是
          1.5,1.75,1.875,1.8125

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)的定義域為(0,+∞),對于任意正實數(shù)m,n恒有f(m•n)=f(m)+f(n),且當(dāng)x>1時,f(x)>0,f(
          1
          2
          )=-1

          (1)求f(2)的值;
          (2)求證:f(x)在(0,+∞)上是增函數(shù);
          (3)解關(guān)于x的不等式f(x)≥2+f(
          3
          x-4
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
          f1(x),f1(x)≤f2(x)
          f2(x),f1(x)>f2(x)

          (1)當(dāng)a=1時,求f(x)的解析式;
          (2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數(shù)m的范圍;
          (3)當(dāng)2≤a<9時,設(shè)f(x)=f2(x)所對應(yīng)的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0)時,f(x)=(
          2
          2
          )
          x
          -1,若在區(qū)間(-2,6)內(nèi)的關(guān)于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數(shù)根,則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•韶關(guān)一模)設(shè)f(x)在區(qū)間I上有定義,若對?x1,x2∈I,都有f(
          x1+x2
          2
          )≥
          f(x1)+f(x2)
          2
          ,則稱f(x)是區(qū)間I的向上凸函數(shù);若對?x1,x2∈I,都有f(
          x1+x2
          2
          )≤
          f(x1)+f(x2)
          2
          ,則稱f(x)是區(qū)間I的向下凸函數(shù),有下列四個判斷:
          ①若f(x)是區(qū)間I的向上凸函數(shù),則-f(x)在區(qū)間I的向下凸函數(shù);
          ②若f(x)和g(x)都是區(qū)間I的向上凸函數(shù),則f(x)+g(x)是區(qū)間I的向上凸函數(shù);
          ③若f(x)在區(qū)間I的向下凸函數(shù),且f(x)≠0,則
          1
          f(x)
          是區(qū)間I的向上凸函數(shù);
          ④若f(x)是區(qū)間I的向上凸函數(shù),?x1,x2,x3,x4∈I,則有f(
          x1+x2+x3+x4
          4
          )≥
          f(x1)+f(x2)+f(x3)+f(x4)
          4

          其中正確的結(jié)論個數(shù)是(  )

          查看答案和解析>>

          同步練習(xí)冊答案