日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x﹣1)>0的解集是(
          A.(﹣3,﹣1)
          B.(﹣3,1)∪(2,+∞)
          C.(﹣3,0)∪(3,+∞)
          D.(﹣1,0)∪(1,3)

          【答案】D
          【解析】解:∵函數(shù)f(x)為奇函數(shù),且在(﹣∞,0)上單調(diào)遞減
          ∴f(x) 在(0,+∞)上單調(diào)遞減;
          ∵xf(x﹣1)>0 可變形為 (1)或 (2)
          又∵函數(shù)f(x)為奇函數(shù),且f(2)=0∴f(﹣2)=﹣f(2)=0;
          ∴不等式組(1)的解為 1<x<3
          不等式組(2)的解為 ﹣1<x<0
          ∴不等式xf(x﹣1)>0的解集是{x|﹣<x<0或1<x<3}
          因此答案為:D
          本題考查函數(shù)的單調(diào)性與奇偶性的綜合試題.求不等式xf(x﹣1)>0的解集實質(zhì)上求分段函數(shù)為 的x取值范圍.又利用奇函數(shù)的性質(zhì)得出f(﹣2)=0,從而得出

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側視圖為直角三角形).

          (1)求四棱錐P-ABCD的體積;

          (2)若G為BC上的動點,求證:AEPG.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列的前項和為,且

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)設,求數(shù)列項和

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】四棱錐P﹣ABCD的頂點P在底面ABCD上的投影恰好是A,其正視圖與側視圖都是腰長為a的等腰直角三角形.則在四棱錐P﹣ABCD的任意兩個頂點的連線中,互相垂直的異面直線共有 對.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的右焦點為,左頂點為

          1)求橢圓的方程;

          2)過點作兩條相互垂直的直線分別與橢圓交于(不同于點的)兩點.試判斷直線軸的交點是否為定點,若是,求出定點坐標;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】分別求適合下列條件的標準方程:

          1)實軸長為12,離心率為,焦點在x軸上的橢圓;

          2)頂點間的距離為6,漸近線方程為的雙曲線的標準方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣2|x|﹣1.
          (1)證明函數(shù)f(x)是偶函數(shù);
          (2)在如圖所示的平面直角坐標系中作出函數(shù)f(x)的圖象.并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;

          (3)求函數(shù)f(x)當x∈[﹣2,4]時的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,直角三角形中, , , 為線段上一點,且,沿邊上的中線折起到的位置.

          (Ⅰ)求證: ;

          (Ⅱ)當平面平面時,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x+ ,且f(1)=2.
          (1)求m的值;
          (2)判斷f(x)的奇偶性;
          (3)用定義法證明f(x)在區(qū)間(1,+∞)上是增函數(shù).

          查看答案和解析>>

          同步練習冊答案