日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四邊形ABCD中,為正三角形,,,AC與BD交于O點.將沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為,且P點在平面ABCD內(nèi)的射影落在內(nèi).

          (Ⅰ)求證:平面PBD;
          (Ⅱ)若時,求二面角的余弦值。
          (1)取BD中點Q,證得Q與O重合。則面PBD
          (2)

          試題分析:(1)取BD中點Q,則三點共線,即Q與O重合。
          面PBD
          (2)因為AC面PBD,而面ABCD,所以面ABCD面PBD,則P點在面ABCD上的射影點在交線BD上(即在射線OD上),所以PO與平面ABCD所成的角。以O(shè)為坐標(biāo)原點,OA為軸,OB為軸建空間直角坐標(biāo)系。,因為AC面PBD,所以面PBD的法向量,設(shè)面PAB的法向量,又,由,得①,又,由,得
           ②, 在①②中令,可得,則
          所以二面角的余弦值
          點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,將立體問題轉(zhuǎn)化成平面問題,是解決立體幾何問題的一個基本思路。通過就落實黨的坐標(biāo)系,利用空間向量,免去了繁瑣的邏輯推理過程,對計算能力要求較高。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,是邊長為的正方形,平面,與平面所成角為.

          (1)求證:平面;
          (2)求二面角的余弦值;
          (3)設(shè)點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          正三棱柱的所有棱長都為4,D為的中點.

          (1)求證:⊥平面;
          (2)求二面角余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          長方體中,

          (1)求直線所成角;
          (2)求直線所成角的正弦.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,

          (Ⅰ) 若點的中點,求證:平面;
          (II)若點為線段的中點,求二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若直線l的方向向量為a=(1,-1,2),平面α的法向量為u=(-2,2,-4),則(  )
          A.lαB.lαC.l?αD.lα斜交

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如右圖,已知ABCD為正方形,,,.
          (1)求證:平面平面
          (2)求點A到平面BEF的距離;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          已知是邊長為2的等邊三角形,平面,上一動點.
          (1)若的中點,求直線與平面所成的角的正弦值;
          (2)在運動過程中,是否有可能使平面?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè),且,則等于( 。
          A.B.9C.D.

          查看答案和解析>>

          同步練習(xí)冊答案