日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x|x-2|.
          (1)求作函數(shù)y=f(x)的圖象;
          (2)寫出f(x)的單調(diào)區(qū)間,并指出在各個區(qū)間上是增函數(shù)還是減函數(shù)?(不必證明)
          (3)已知f(x)=
          14
          ,求x的值.
          分析:(1)首先應(yīng)該將絕對值函數(shù)化成分段函數(shù),然后利用二次函數(shù)的性質(zhì),分段畫出函數(shù)的圖象;
          (2)在函數(shù)圖象上得到函數(shù)的單調(diào)區(qū)間,分別指出增減函數(shù)區(qū)間即可;
          (3)利用分段函數(shù)的解析式分段求出滿足f(x)=
          1
          4
          ,的x的值即可.
          解答:解::(1)當x≥2時,f(x)=x(x-2)=x2-2x,
          當x<2時,f(x)=-x(x-2)=-x2+2x,
          即f(x)=
          x2-2x      (x≥2)
          -x2+2x      (x<2)

          根據(jù)二次函數(shù)的作圖方法,可得函數(shù)圖象如圖.
          (2)由圖可知:
          單調(diào)區(qū)間為(-∞,1),(1,2),(2,+∞),
          分別為增函數(shù)、減函數(shù)、增函數(shù)
          (3)當x≥2時,f(x)=x(x-2)=
          1
          4
          ,解得x=1+
          5
          2
          ;
          當x<2時,f(x)=-x(x-2)=
          1
          4
          ,解得x=1+
          3
          2
          ,1-
          3
          2

          ∴x的值:x∈{1+
          5
          2
          ,1+
          3
          2
          ,1-
          3
          2
          }
          點評:本題考查的是二次函數(shù)與絕對值綜合作圖的問題.在解答的過程當中充分體現(xiàn)了絕對值的知識、分段函數(shù)的思想、二次函數(shù)的性質(zhì).注意作圖時的規(guī)范.值得同學(xué)們體會和反思.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案