日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 把函數(shù)y=lnx-2的圖象按向量數(shù)學(xué)公式=(-1,2)平移得到函數(shù)y=f(x)的圖象.
          (1)若x>0,證明;f(x)>數(shù)學(xué)公式;
          (2不等式數(shù)學(xué)公式x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

          (1)證明:∵函數(shù)y=lnx-2的圖象按向量=(-1,2)平移得到函數(shù)y=f(x)的圖象
          ∴f(x)=ln(x+1),
          構(gòu)建函數(shù),
          求導(dǎo)函數(shù)得
          ∵x>0,∴F′(x)>0,
          ∴在(0,+∞)上,F(xiàn)(x)為增函數(shù).
          ∴F(x)>F(0)=0,


          (2)解:∵不等式x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立
          -2bm-3,對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立
          設(shè)g(x)=+1),
          則g′(x)=x-
          x∈(-1,0)時(shí),g′(x)>0,x∈(0,1)時(shí),g′(x)<0.
          ∴x∈(-1,1)時(shí),g(x)≤g(0)=0.
          ∴x∈(-1,1)時(shí),0≤m2-2bm-3,
          ∴問(wèn)題可化為對(duì)b∈[-1,1]時(shí),0≤m2-2bm-3恒成立,即使2mb+3-m2≤0恒成立.

          ∴m≤-3或m≥3
          綜上,實(shí)數(shù)m的取值范圍是(-∞,-3]∪[3,+∞).
          分析:(1)先根據(jù)向量的平移,求得f(x)=ln(x+1),再構(gòu)建函數(shù),確定函數(shù)的單調(diào)性,從而可證不等式;
          (2)不等式x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,等價(jià)于-2bm-3,對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,求出左邊函數(shù)的最大值,進(jìn)一步可化為對(duì)b∈[-1,1]時(shí),0≤m2-2bm-3恒成立,即使2mb+3-m2≤0恒成立,從而可求實(shí)數(shù)m的取值范圍.
          點(diǎn)評(píng):本題重點(diǎn)考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,進(jìn)而證明不等式,考查恒成立問(wèn)題的理解與處理,綜合性強(qiáng).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          把函數(shù)y=lnx-2的圖象按向量
          a
          =(-1,2)
          平移得到函數(shù)y=f(x)的圖象.
          (I)若x>0,試比較f(x)與
          2x
          x+2
          的大小,并說(shuō)明理由;
          (II)若不等式
          1
          2
          x2≤f(x2)+m2-2bm-3
          .當(dāng)x,b∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          把函數(shù)y=lnx-2的圖象按向量
          α
          =(-1,2)平移得到函數(shù)y=f(x)的圖象.
          (1)若x>0,證明;f(x)>
          2x
          x+2
          ;
          (2不等式
          1
          2
          x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          把函數(shù)y=lnx-2的圖象按向量a=(-1,2)平移得到函數(shù)y=f(x)的圖象.

          (1)若x>0,證明:f(x)>;

          (2)若不等式x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年黃岡中學(xué)河南學(xué)校高三(上)第一次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

          把函數(shù)y=lnx-2的圖象按向量=(-1,2)平移得到函數(shù)y=f(x)的圖象.
          (1)若x>0,證明;f(x)>
          (2不等式x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案