日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓)的一個焦點與拋物線的焦點重合,截拋物線的準線所得弦長為1.

          1)求橢圓的方程;

          2)如圖所示,,是橢圓的頂點,是橢圓上除頂點外的任意一點,直線軸于點,直線于點,設的斜率為,的斜率為.證明:為定值.

          【答案】1;(2)詳見解析.

          【解析】

          1)由橢圓與拋物線的焦點相同可知橢圓的焦點為,,且拋物線的準線為,再由弦長為1可得橢圓與準線的一個交點為,即可代入橢圓方程中,進而求解即可;

          2)由(1)可得點的坐標,設直線的方程為,),與橢圓方程聯(lián)立可得點的坐標,由直線的方程為與直線的方程聯(lián)立可得點的坐標,再根據(jù)三點共線可得點的坐標,即可求得的斜率,進而得證.

          1)解:由題,橢圓焦點即為拋物線的焦點為,準線方程為,①,

          又橢圓截拋物線的準線所得弦長為1,

          ∴可得一個交點為,②,由①②可得,

          從而,

          ∴該橢圓的方程為

          2)證明:由(1)可得,且點不為橢圓頂點,

          則可設直線的方程為,),③

          ③代入,解得,

          因為直線的方程為

          ③與④聯(lián)立解得,

          ,,三點共線知,即,解得,

          所以的斜率為,

          (定值).

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖有一景區(qū)的平面圖是一半圓形,其中直徑長為兩點在半圓弧上滿足,設,現(xiàn)要在景區(qū)內(nèi)鋪設一條觀光通道,由 組成.

          (1)用表示觀光通道的長,并求觀光通道的最大值;

          (2)現(xiàn)要在景區(qū)內(nèi)綠化,其中在中種植鮮花,在中種植果樹,在扇形內(nèi)種植草坪,已知單位面積內(nèi)種植鮮花和種植果樹的利潤均是種植草坪利潤的 倍,則當為何值時總利潤最大?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于定義域為D的函數(shù)y=fx,如果存在區(qū)間[m,n]D,同時滿足:

          ①fx[m,n]內(nèi)是單調(diào)函數(shù);

          ②當定義域是[m,n]時,fx的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.

          1證明:[0,1]是函數(shù)y=fx=x2的一個“和諧區(qū)間”.

          2求證:函數(shù)不存在“和諧區(qū)間”.

          3已知:函數(shù)aR,a0有“和諧區(qū)間”[m,n],當a變化時,求出n﹣m的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知(m,n為常數(shù)),在處的切線方程為

          (Ⅰ)求的解析式并寫出定義域;

          (Ⅱ)若,使得對上恒有成立,求實數(shù)的取值范圍;

          (Ⅲ)若有兩個不同的零點,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】直線l與兩直線y=1和x-y-7=0分別交于A,B兩點,若線段AB的中點為M(1,-1),則直線l的斜率為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直角梯形中,,、分別是的中點,將三角形沿折起,則下列說法正確的是______________.

          1)不論折至何位置(不在平面內(nèi)),都有平面;

          2)不論折至何位置,都有;

          3)不論折至何位置(不在平面內(nèi)),都有;

          4)在折起過程中,一定存在某個位置,使.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)當時,求函數(shù)在點處的切線方程;

          2)若函數(shù)有兩個不同極值點,求實數(shù)的取值范圍;

          3)當時,求證:對任意,恒成立.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖1,在等腰梯形中,分別為的中點.現(xiàn)分別沿折起,使得平面平面,平面平面,連接,如圖2.

          (1)求證:平面平面;

          (2)求多面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設數(shù)集由實數(shù)構(gòu)成,且滿足:若),則.

          (1)若,試證明中還有另外兩個元素;

          (2)集合是否為雙元素集合,并說明理由;

          (3)若中元素個數(shù)不超過8個,所有元素的和為,且中有一個元素的平方等于所有元素的積,求集合.

          查看答案和解析>>

          同步練習冊答案