日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),若直線l與y=f(x)和y=g(x)的圖象都相切,且l與y=f(x)的圖象相切于定點P(1,f(1)).
          (1)求直線l的方程及a的值;
          (2)當(dāng)k∈R時,討論關(guān)于x的方程f(x2+1)-g(x)=k的實數(shù)解的個數(shù).
          分析:(1)先利用導(dǎo)數(shù)求出函數(shù)f(x)=lnx在定點P(1,f(1))處的切線斜率,從而得到直線l的方程,再根據(jù)直線l與y=g(x)相切,聯(lián)立方程組,消去y,根據(jù)△=0可求出a的值;
          (2)令h(x)=f(x2+1)-g(x),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的極值,畫出草圖,討論k的取值范圍,從而判別方程f(x2+1)-g(x)=k的實數(shù)解的個數(shù).
          解答:解:(1)f′(x)=
          1
          x
          ,∴f'(1)=1.∴切點為(1,0).
          ∴l(xiāng)的解析式為y=x-1.(2分)
          又l與y=g(x)相切,
          y=x-1
          y=
          1
          2
          x2+a
          x2-2x+2a+2=0

          △=(-2)2-4(2a+2)=0⇒a=-
          1
          2
          (5分)
          (2)令h(x)=f(x2+1)-g(x)=ln(x2+1)-
          1
          2
          x2+
          1
          2

          h′(x)=
          2x
          x2+1
          -x=
          -x3+x
          x2+1
          =-
          x(x+1)(x-1)
          x2+1
          (7分)
          令h'(x)=0⇒x1=0,x2,3=±1.
          x (-∞,-1) -1 (-1,0) 0 (0,1) 1 (1,+∞)
          h'(x) + 0 - + -
          h(x) 極大值ln2 極小值
          1
          2
          極大值ln2
          1°k∈(ln2,+∞)時,方程無解.
          2°當(dāng)k=ln2時,方程有2解.
          3°當(dāng)
          1
          2
          <k<ln2
          ,方程有4解
          .4°當(dāng)k=
          1
          2
          時,方程有3解.
          5°當(dāng)k<
          1
          2
          時,方程有2解.(13分)
          點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及利用導(dǎo)數(shù)研究函數(shù)的極值,同時考查了畫圖能力以及分類討論的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點;
          (Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時,函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案