日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ax(lnx﹣1)(a≠0).
          (1)求函數(shù)y=f(x)的單調遞增區(qū)間;
          (2)當a>0時,設函數(shù)g(x)= x3﹣f(x),函數(shù)h(x)=g′(x),
          ①若h(x)≥0恒成立,求實數(shù)a的取值范圍;
          ②證明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).

          【答案】
          (1)解:函數(shù)f(x)=ax(lnx﹣1)的導數(shù)為f′(x)=a(lnx﹣1)+a=alnx,

          當a>0時,x>1時,f′(x)>0,f(x)遞增;0<x<1時,f′(x)<0,f(x)遞減;

          當a<0時,0<x<1時,f′(x)>0,f(x)遞增;x>1時,f′(x)<0,f(x)遞減.

          即有a>0,f(x)的遞增區(qū)間為(1,+∞);

          a<0時,f(x)的遞增區(qū)間為(0,1)


          (2)①當a>0時,設函數(shù)g(x)= x3﹣f(x)= x3﹣ax(lnx﹣1),

          函數(shù)h(x)=g′(x)= x2﹣alnx,x>0,

          h(x)≥0恒成立,即為 的最大值,

          由y= 的導數(shù)為 ,當x> 時,函數(shù)y遞減;

          當0<x< 時,函數(shù)y遞增,即有x= 取得最大值 ,

          則有 ,解得0<a≤e;

          ②證明:由①可得 ,x∈N,

          即有2elnn<n2,

          可得2e(ln1+ln2+ln3+…+lnn)<12+22+32+…+n2

          則ln(123…n)2e<12+22+32+…+n2(n∈N*).


          【解析】(1)對f(x)進行求導,f′(x)=a(lnx﹣1)+a=alnx,對a進行分類討論得到單調區(qū)間,(2)①當a>0時,對g(x)進行求導,由題意可得的最大值,求出右邊函數(shù)的導數(shù),求得單調區(qū)間、極值和最值,即可得到所求a的范圍,②由①可得,,可得,由累加法和對數(shù)的運算性質即可得證.
          【考點精析】根據題目的已知條件,利用利用導數(shù)研究函數(shù)的單調性的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動點M到點N(1,0)和直線l:x=﹣1的距離相等. (Ⅰ)求動點M的軌跡E的方程;
          (Ⅱ)已知不與l垂直的直線l'與曲線E有唯一公共點A,且與直線l的交點為P,以AP為直徑作圓C.判斷點N和圓C的位置關系,并證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】我國南宋數(shù)學家秦九韶所著《數(shù)學九章》中有“米谷粒分”問題:糧倉開倉收糧,糧農送來米1512石,驗得米內夾谷,抽樣取米一把,數(shù)得216粒內夾谷27粒,則這批米內夾谷約(  )
          A.164石
          B.178石
          C.189石
          D.196石

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】甲、乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者對本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 ,且各人回答正確與否相互之間沒有影響.用ξ表示甲隊的總得分.
          (Ⅰ)求隨機變量ξ的分布列和數(shù)學期望;
          (Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=(x2+ax+b)ex , 當b<1時,函數(shù)f(x)在(﹣∞,﹣2),(1,+∞)上均為增函數(shù),則 的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)對x∈R恒成立,當x∈[0,1]時,f(x)=2x , 則f(﹣log224)=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x﹣1),且當x∈(0,2)時,f(x)=2x , 則f(log280)=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列四個命題中正確是( )
          A.函數(shù)y=ax(a>0且a≠1)與函數(shù) (a>0且a≠1)的值域相同
          B.函數(shù)y=與y=的值域相同
          C.函數(shù) 都是奇函數(shù)
          D.函數(shù)y=與y=2x1在區(qū)間[0,+∞)上都是增函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設△ABC的三個內角分別為A,B,C.向量 共線. (Ⅰ)求角C的大;
          (Ⅱ)設角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,試判斷△ABC的形狀.

          查看答案和解析>>

          同步練習冊答案