日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (Ⅰ)寫出當(dāng)時直線的普通方程和曲線的直角坐標(biāo)方程;

          (Ⅱ)已知點,直線與曲線相交于不同的兩點,求的最大值.

          【答案】(Ⅰ)直線的普通方程為,曲線的直角坐標(biāo)方程為(Ⅱ)

          【解析】

          (Ⅰ)當(dāng)時,直接消參可得直線的普通方程:,對兩邊乘以,結(jié)合可得曲線的直角坐標(biāo)方程為:,問題得解。

          (Ⅱ)顯然,點在直線上,聯(lián)立直線的參數(shù)方程及圓的普通方程可得:,即可求得:,,再利用參數(shù)的幾何意義可得:,整理可得:,問題得解。

          解:(Ⅰ)當(dāng)時,由,消去參數(shù)可得:

          即直線的普通方程為,

          ,得

          ∴曲線的直角坐標(biāo)方程為.

          (Ⅱ)顯然,點在直線上,

          聯(lián)立得:

          設(shè),對應(yīng)的參數(shù)為,

          ,

          ,

          ∴當(dāng)時,取得最大值2.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,點F為拋物線的焦點,焦點F到直線3x-4y+3=0的距離為d1,焦點F到拋物線C的準(zhǔn)線的距離為d2,且。

          (1)拋物線C的標(biāo)準(zhǔn)方程;

          (2)若在x軸上存在點M,過點M的直線l分別與拋物線C相交于P、Q兩點,且為定值,求點M的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,,若動點滿足:.

          1)求動點的軌跡的方程;

          2)若點分別位于軸與軸的正半軸上,直線與曲線相交于兩點,且,請問在曲線上是否存在點,使得四邊形為坐標(biāo)原點)為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 .

          討論的單調(diào)性;

          ,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          某中學(xué)高二年級共有8個班,現(xiàn)從高二年級選10名同學(xué)組成社區(qū)服務(wù)小組,其中高二(1)班選取3名同學(xué),其它各班各選取1名同學(xué).現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué)到社區(qū)老年中心參加尊老愛老活動(每位同學(xué)被選到的可能性相同).

          1)求選出的3名同學(xué)來自不同班級的概率;

          2)設(shè)為選出的同學(xué)來自高二(1)班的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知M為圓Cx2y24x14y450上任意一點,且點Q(-2,3).

          1)求|MQ|的最大值和最小值;

          2)若Mm,n),求的最大值和最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)當(dāng)時,討論函數(shù)的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點為橢圓的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形,直線與橢圓有且僅有一個交點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線軸交于,過點的直線與橢圓交于兩不同點,,若,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《國家中長期教育改革和發(fā)展規(guī)劃2010-2020》指出,到2020年基本實現(xiàn)教育現(xiàn)代化,進(jìn)入人力資源強(qiáng)國行列,并提出要實現(xiàn)更高水平的普及教育,基本普及學(xué)前教育、鞏固提高九年義務(wù)教育、提高高等教育大眾化水平,從國家層面確立了教育的重要地位.隨著國家對教育的日益重視,教育經(jīng)費投入也逐漸加大.下圖是我國2010年到2016年國家財政性教育經(jīng)費投入(單位:萬億元)的散點圖,年份代碼為.

          注:年份代碼1-7分別對應(yīng)年份2010-2016.

          1)由散點圖可知國家財政性教育經(jīng)費投入與年份代碼具有相關(guān)關(guān)系,試建立國家財政性教育經(jīng)費投入與年份代碼的回歸方程;

          2)預(yù)測2020年我國國家財政性教育經(jīng)費投入的值是否能超過萬億.

          附注:參考數(shù)據(jù):,,

          參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:,.

          查看答案和解析>>

          同步練習(xí)冊答案