日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線f(x)=x3+x2+x+3在x=-1處的切線恰好與拋物線y=2ax2相切,則過該拋物線的焦點(diǎn)且垂直于對稱軸的直線與拋物線相交截得的線段長度為
           
          分析:為求斜率,先求導(dǎo)函數(shù),得到切線方程,從而可求拋物線方程,進(jìn)而求出線段長.
          解答:解:f′(x)=3x2+2x+1f′(-1)=2,2a=2,a=1,拋物線y=2x2,其焦點(diǎn)坐標(biāo)為(0,
          1
          8
          )
          ,所以當(dāng)y=
          1
          8
          時,x=±
          1
          4
          ,故所求線段長為
          1
          2
          ,
          故答案為
          1
          2
          點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,要求過曲線上一點(diǎn)處的切線方程,一般先求出該點(diǎn)的導(dǎo)數(shù)值(斜率),再用點(diǎn)斜式寫出后化簡,同時我們還可以據(jù)此寫出該點(diǎn)處的法線方程,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.考查了學(xué)生運(yùn)用數(shù)學(xué)知識分析問題和解決問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線f(x)=
          x-1
          在點(diǎn)A(2,1)處的切線為直線l
          (1)求切線l的方程;
          (2)求切線l,x軸及曲線所圍成的封閉圖形的面積S.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x3+ax2+bx+5,若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為3,且當(dāng)x=
          23
          時,y=f(x)有極值.
          (1)求函數(shù)f(x)的解析式;
          (2)求函數(shù)f(x)在[-4,1]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線f(x)=x3+bx2+cx在點(diǎn)A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個極值點(diǎn)為x=0.
          (Ⅰ)求實(shí)數(shù)b,c的值;
          (Ⅱ)若函數(shù)y=f(x),x∈[-
          12
          ,3]
          的圖象與直線y=m恰有三個交點(diǎn),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案