日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐P—ABCD的底面是邊長為a的棱形,PD⊥底面ABCD.

          1)證明:AC⊥平面PBD

          2)若PD=AD,直線PB與平面ABCD所成的角為45°,四棱錐PABCD的體積為,求a的值.

          【答案】1)見解析(22

          【解析】

          (1)根據(jù)菱形與PD平面ABCD,證明即可.

          (2)根據(jù)直線PB與平面ABCD所成的角為45°可得BD=PD=,進而根據(jù)體積公式列式求解即可.

          解:(1)因為四邊形ABCD是菱形,所以ACBD,

          又因為PD平面ABCD,平面ABCD,所以PDAC,

          ,故AC平面PBD;

          2)因為PD平面ABCD,

          所以∠PBD是直線PB與平面ABCD所成的角,

          于是∠PBD=45°,

          因此BD=PD=,又AB= AD=

          所以菱形ABCD的面積為,.

          故四棱錐P- ABCD的體積,.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 ,直線不過原點O且不平行于坐標軸, 有兩

          個交點A、B,線段AB的中點為M.

          1)若,點K在橢圓上, 、分別為橢圓的兩個焦點,求的范圍;

          2)證明:直線的斜率與的斜率的乘積為定值;

          3)若過點,射線OM交于點P,四邊形能否為平行四邊形?

          若能,求此時的斜率;若不能,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米,最低點D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ

          (1)設(shè)此人到直線EC的距離為x米,試用x表示點M到地面的距離;

          (2)此人到直線EC的距離為多少米時,視角θ最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直, 為等邊三角形, 內(nèi)部一點,點的延長線上,且PA=PB

          Ⅰ)證明:OA=OB;

          Ⅱ)證明:平面PAB平面POC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在標有的袋中有個紅球和個白球,這些球除顏色外完全相同.

          Ⅰ)若從袋中依次取出個球,求在第一次取到紅球的條件下,后兩次均取到白球的概率;

          Ⅱ)現(xiàn)從甲袋中取出個紅球, 個白球,裝入標有的空袋.若從甲袋中任取球,乙袋中任取球,記取出的紅球的個數(shù)為,求的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】網(wǎng)絡(luò)是一種先進的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司20198月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表20198月,2代表20199……,5代表201912月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)(

          A.20206B.20207C.20208D.20209

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是奇函數(shù).

          (1)求實數(shù)的值;

          (2)求函數(shù)上的值域;

          (3)令,求不等式的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

          (1)求關(guān)于的函數(shù)解析式,并求出定義域;

          (2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠生產(chǎn)部門隨機抽測生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

          根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

          分組

          頻數(shù)

          頻率

          [25,30]

          3

          0.12

          3035]

          5

          0.20

          35,40]

          8

          0.32

          40,45]

          n1

          f1

          4550]

          n2

          f2

          1)確定樣本頻率分布表中n1、n2f1f2的值;

          2)現(xiàn)從日加工零件數(shù)落在(40,45]的工人中隨機選取兩個人,求這兩個人中至少有一個來自B車間的概率.

          查看答案和解析>>

          同步練習(xí)冊答案