【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù): ,其中
是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量
的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少元?
【答案】(1);;(2)月產(chǎn)量為300臺(tái)時(shí),公司所獲利潤最大,最大利潤是25000元
【解析】
(1)根據(jù)利潤=收益-成本,由已知分兩段當(dāng)時(shí),和當(dāng)
時(shí),求出利潤函數(shù)的解析式;
(2)根據(jù)分段函數(shù)的表達(dá)式,分別求出函數(shù)的最大值即可得到結(jié)論.
(1)由于月產(chǎn)量為臺(tái),則總成本為
,
從而利潤;
(2)當(dāng)時(shí),
,
所以當(dāng)時(shí),有最大值25000;
當(dāng)時(shí),
是減函數(shù),
則.
所以當(dāng)時(shí),有最大值25000,
即當(dāng)月產(chǎn)量為300臺(tái)時(shí),公司所獲利潤最大,最大利潤是25000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過橢圓
:
的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)
,
,
是橢圓
上的兩點(diǎn),它們?cè)?/span>
軸兩側(cè),且
的平分線在
軸上,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點(diǎn).
【答案】(Ⅰ).(Ⅱ)直線
過定點(diǎn)
.
【解析】【試題分析】(I)根據(jù)圓的半徑和已知 ,故
,由此求得橢圓方程.(II)設(shè)出直線
的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,寫出
的斜率并相加,由此求得直線
過定點(diǎn)
.
【試題解析】
(Ⅰ)圓與
軸交點(diǎn)
即為橢圓的焦點(diǎn),圓
與
軸交點(diǎn)
即為橢圓的上下兩頂點(diǎn),所以
,
.從而
,
因此橢圓的方程為:
.
(Ⅱ)設(shè)直線的方程為
.
由,消去
得
.
設(shè),
,則
,
.
直線的斜率
;
直線的斜率
.
.
由的平分線在
軸上,得
.又因?yàn)?/span>
,所以
,
所以.
因此,直線過定點(diǎn)
.
[點(diǎn)睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長、弦中點(diǎn)問題.(3)軌跡問題.(4)定值、最值及參數(shù)范圍問題.(5)存在性問題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)(
,且
).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)對(duì)任意的
都有
,且
.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù).
①若存在實(shí)數(shù),
,使得
在區(qū)間
上為單調(diào)函數(shù),且
取值范圍也為
,求
的取值范圍;
②若函數(shù)的零點(diǎn)都是函數(shù)
的零點(diǎn),求
的所有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某服裝商場,當(dāng)某一季節(jié)即將來臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價(jià)格(單位:元)與周次
之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次
之間的關(guān)系為
,
,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價(jià)格-每件進(jìn)價(jià))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為
的正方形,
是
的中點(diǎn),點(diǎn)
沿著路徑
在正方形邊上運(yùn)動(dòng)所經(jīng)過的路程為
,
的面積為
.
(1)求的解析式及定義域;
(2)求面積的最大值及此時(shí)點(diǎn)
位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-.
(1)判斷函數(shù)的奇偶性,并證明;
(2)用單調(diào)性的定義證明函數(shù)f(x)=2x-在(0,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且點(diǎn)
在函數(shù)
的圖象上.
(1)求函數(shù)的解析式,并在圖中的直角坐標(biāo)系中畫出函數(shù)
的圖象;
(2)求不等式的解集;
(3)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)平面中, 的兩個(gè)頂點(diǎn)為
,平面內(nèi)兩點(diǎn)
、
同時(shí)滿足:①
;②
;③
.
(1)求頂點(diǎn)的軌跡
的方程;
(2)過點(diǎn)作兩條互相垂直的直線
,直線
與點(diǎn)
的軌跡
相交弦分別為
,設(shè)弦
的中點(diǎn)分別為
.
①求四邊形的面積
的最小值;
②試問:直線是否恒過一個(gè)定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn),若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com