日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (如圖)過(guò)橢圓數(shù)學(xué)公式=1(a>b>0)的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB;若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”.
          (1)求橢圓數(shù)學(xué)公式=1的“左特征點(diǎn)”M的坐標(biāo).
          (2)試根據(jù)(1)中的結(jié)論猜測(cè):橢圓數(shù)學(xué)公式=1(a>b>0)的“左特征點(diǎn)”M是一個(gè)怎么樣的點(diǎn)?并證明你的結(jié)論.

          解:(1)設(shè)M的左特征點(diǎn)
          因?yàn),橢圓的左焦點(diǎn)F(-2,0),
          可設(shè)直線AB的方程為x=ky-2(k≠0)
          代入,得:(ky-2)y2+5y2=5,
          即(k2+5)y2-4ky-1=0,設(shè)A(x1,y1),B(x2,y2)得,
          由于,∠AMB被x軸平分,kAM+kBM=0,即y1(x2-m)+y2(x1-m)=0,即y1(ky2-2)+y2(ky1-2)-(y1+y2)m=0
          所以,2ky1y2-(y1+y2)(m+2)=0
          于是,
          因?yàn)閗≠0,所以1+2(m+2)=0,即
          (2)對(duì)于橢圓,
          于是猜想:橢圓的“左特征點(diǎn)”是橢圓的左準(zhǔn)線與x軸的交點(diǎn)
          證明:設(shè)橢圓的左準(zhǔn)線l與x軸相交于M點(diǎn),過(guò)A、B分別作l的垂線,
          垂足為C、D.
          據(jù)橢圓的第二定義:
          由于AC∥FM∥BD,所以
          于是
          所以,∠AMC=∠BMD?∠AMF=∠BMF
          則MF為∠AMB的平分線
          故M為橢圓的“左特征點(diǎn)”.
          分析:(1)設(shè)M的左特征點(diǎn),由橢圓左焦點(diǎn)F(-2,0),可設(shè)直線AB方程為x=ky-2(k≠0),代入,得(k2+5)y2-4ky-1=0,由∠AMB被x軸平分,kAM+kBM=0,即整理可求.
          (2)對(duì)于橢圓,,結(jié)合橢圓的性質(zhì)特征可猜想:橢圓的左特征點(diǎn)是橢圓的左準(zhǔn)線與x軸的交點(diǎn),然后可以利用第二定義給與證明.
          點(diǎn)評(píng):本題以新定義為載體主要考查了橢圓性質(zhì)的應(yīng)用,直線與橢圓相交關(guān)系的處理,要注意解題中直線AB得方程設(shè)為x=ky-2(k≠0)的好處在于避免討論直線的斜率是否存在.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          附加題:如圖,過(guò)橢圓C:
          y2
          a2
          +
          x2
          b2
          =1
          (a>b>0)上一動(dòng)點(diǎn)P引圓x2+y2=b2的兩條切線PA,PB(A,B為切點(diǎn)).直線AB與x軸、y軸分別交于M、N兩點(diǎn).
          ①已知P點(diǎn)的坐標(biāo)為(x0,y0),并且x0•y0≠0,試求直線AB的方程;    
          ②若橢圓的短軸長(zhǎng)為8,并且
          a2
          |OM|2
          +
          b2
          |ON|2
          =
          25
          16
          ,求橢圓C的方程;
          ③橢圓C上是否存在P,由P向圓O所引兩條切線互相垂直?若存在,求出存在的條件;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,并且焦距為2,短軸與長(zhǎng)軸的比是
          3
          2

          (1)求橢圓的方程;
          (2)已知橢圓中有如下定理:過(guò)橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上任意一點(diǎn)M(x0,y0)的切線唯一,且方程為
          x0x
          a2
          +
          y0y
          b2
          =1
          ,利用此定理求過(guò)橢圓的點(diǎn)(1,
          3
          2
          )
          的切線的方程;
          (3)如圖,過(guò)橢圓的右準(zhǔn)線上一點(diǎn)P,向橢圓引兩條切線PA,PB,切點(diǎn)為A,B,求證:A,F(xiàn),B三點(diǎn)共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市第二外國(guó)語(yǔ)學(xué)校高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (如圖)過(guò)橢圓=1(a>b>0)的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB;若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”.
          (1)求橢圓=1的“左特征點(diǎn)”M的坐標(biāo).
          (2)試根據(jù)(1)中的結(jié)論猜測(cè):橢圓=1(a>b>0)的“左特征點(diǎn)”M是一個(gè)怎么樣的點(diǎn)?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年寧夏銀川一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (如圖)過(guò)橢圓=1(a>b>0)的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB;若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”.
          (1)求橢圓=1的“左特征點(diǎn)”M的坐標(biāo).
          (2)試根據(jù)(1)中的結(jié)論猜測(cè):橢圓=1(a>b>0)的“左特征點(diǎn)”M是一個(gè)怎么樣的點(diǎn)?并證明你的結(jié)論.

          查看答案和解析>>