日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•朝陽區(qū)二模)如圖,一艘船上午8:00在A處測得燈塔S在它的北偏東30°處,之后它繼續(xù)沿正北方向勻速航行,上午8:30到達(dá)B處,此時(shí)又測得燈塔S在它的北偏東75°處,且與它相距4
          2
          n mile,則此船的航行速度是
          16
          16
          n mile/h.
          分析:在△ABS中,已知∠BAS=30°,∠ASB=45°,又已知三角形ABS中邊BS=4
          2
          ,先求出邊AB的長,再利用物理知識解出.
          解答:解:因?yàn)樵凇鰽BS中,已知∠BAS=30°,∠ASB=45°,且邊BS=4
          2
          ,
          利用正弦定理可得:
          AB
          sin45°
          =
          BS
          sin30°

          AB
          2
          2
          =
          4
          2
          1
          2

          ∴AB=8,
          又因?yàn)閺腁到S勻速航行時(shí)間為半個(gè)小時(shí),所以速度應(yīng)為:
          8
          1
          2
          =16
          (mile/h).
          故答案為:16
          點(diǎn)評:本題以實(shí)際問題為載體,考查正弦定理的運(yùn)用此,考查了學(xué)生的物理知識速度=
          位移
          時(shí)間
          ,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽區(qū)二模)已知全集U=R,集合A={x|2x>1},B={ x|
          1
          x-1
          >0 }
          ,則A∩(CUB)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽區(qū)二模)設(shè)函數(shù)f(x)=lnx+(x-a)2,a∈R.
          (Ⅰ)若a=0,求函數(shù)f(x)在[1,e]上的最小值;
          (Ⅱ)若函數(shù)f(x)在[
          12
          ,2]
          上存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)a的取值范圍;
          (Ⅲ)求函數(shù)f(x)的極值點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽區(qū)二模)在長方形AA1B1B中,AB=2A1=4,C,C1分別是AB,A1B1的中點(diǎn)(如圖).將此長方形沿CC1對折,使平面AA1C1C⊥平面CC1B1B(如圖),已知D,E分別是A1B1,CC1的中點(diǎn).
          (Ⅰ)求證:C1D∥平面A1BE;
          (Ⅱ)求證:平面A1BE⊥平面AA1B1B;
          (Ⅲ)求三棱錐C1-A1BE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽區(qū)二模)已知cosα=
          3
          5
          ,0<α<π,則tan(α+
          π
          4
          )
          =( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽區(qū)二模)已知函數(shù)f(x)=2sinx•sin(
          π
          2
          +x)-2sin2x+1
          (x∈R).
          (Ⅰ)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)若f(
          x0
          2
          )=
          2
          3
          x0∈(-
          π
          4
          ,
          π
          4
          )
          ,求cos2x0的值.

          查看答案和解析>>

          同步練習(xí)冊答案