日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 三棱錐P-ABC中,三角形PAB是等邊三角形,∠PAC=∠PBC=90°
          (Ⅰ)證明:AB⊥PC
          (Ⅱ)若三角形ABC是邊長為2
          2
          的正三角形,(1)求證:面PAC⊥面PBC;(2)求三棱錐P-ABC的體積.
          分析:(I)利用△PAB是等邊三角形,證明AC=BC.取AB中點D,連接PD、CD,通過證明AB⊥平面PDC,然后證明AB⊥PC.
          (II)(1)作BE⊥PC,垂足為E,連接AE,利用證得∠AEB=90°,結(jié)合平面垂直的定義即可得到面PAC⊥面PBC;(2)通過Rt△PBC≌Rt△PAC,Rt△AEB≌Rt△PEB,說明△AEB,△PEB,△CEB都是等腰直角三角形.然后求出三棱錐P-ABC的體積.
          解答:解:(I)證明:因為△PAB是等邊三角形,
          ∠PAC=∠PBC=90°,
          PC=PC
          所以Rt△PBC≌Rt△PAC,
          可得AC=BC.
          如圖,取AB中點D,連接
          PD、CD,
          則PD⊥AB,CD⊥AB,
          所以AB⊥平面PDC,
          所以AB⊥PC.
          (II)(1)作BE⊥PC,垂足為E,連接AE.
          因為Rt△PBC≌Rt△PAC,
          所以AE⊥PC,AE=BE.
          在三角形ABE中,由已知,得BE=AE=2,AB=2
          2
          ,
          故∠AEB=90°.
          從而,平面PAC⊥平面PBC,
          (2)因為Rt△AEB≌Rt△PEB,
          所以△AEB,△PEB,△CEB都是等腰直角三角形.
          由已知得PC=4,AE=BE=2,
          △AEB的面積S=2.
          因為PC⊥平面AEB,
          所以三棱錐P-ABC的體積:
          V=
          1
          3
          ×S×PC=
          8
          3
          點評:本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.是中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
          (1)證明:AB⊥PC;
          (2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=
          π2
          ,PA=2,AB=AC=4,點D、E、F分別為BC、AB、AC的中點.
          (I)求證:EF⊥平面PAD;
          (II)求點A到平面PEF的距離;
          (III)求二面角E-PF-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
          (Ⅰ)當(dāng)k=
          12
          時,求直線PA與平面PBC所成角的大。
          (Ⅱ)當(dāng)k取何值時,O在平面PBC內(nèi)的射影恰好為△PBC的重心?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PC⊥平面ABC,△ABC為正三角形,D、E、F分別是BC,PB,CA的中點.
          (1)證明平面PBF⊥平面PAC;
          (2)判斷AE是否平行于平面PFD,并說明理由;
          (3)若PC=AB=2,求三棱錐P-DEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在正三棱錐P-ABC中,M,N分別是PB,PC的中點,若截面AMN⊥側(cè)面PBC,則此棱錐截面與底面所成的二面角正弦值是
          6
          6
          6
          6

          查看答案和解析>>

          同步練習(xí)冊答案