日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義:對于數(shù)列,如果存在常數(shù),使對任意正整數(shù),總有成立,那么我們稱數(shù)列為“﹣擺動數(shù)列”.

          ①若,,則數(shù)列_____﹣擺動數(shù)列”,_____﹣擺動數(shù)列”(回答是或不是);

          ②已知“﹣擺動數(shù)列”滿足.則常數(shù)的值為_____.

          【答案】不是

          【解析】

          ①由是關于的遞增數(shù)列,可知不滿足定義,由可知正負交替出現(xiàn),易求出的值;②先對取特殊值確定的取值范圍,再根據(jù)對任意的正整數(shù)都成立,求出的值.

          ①由知道是遞增數(shù)列,故不存在滿足定義的

          又因為可知正負數(shù)值交替出現(xiàn),故時滿足定義

          ②因為數(shù)列是“﹣擺動數(shù)列”,故時有

          可求得:

          又因為使對任意正整數(shù),總有成立,即有成立

          所以,,…,

          同理,…,

          所以,即,解得,即

          同理,解得,即

          綜上,

          本題正確結果:不是;是;

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          1)求使方程存在兩個實數(shù)解時,的取值范圍;

          2)設,函數(shù),.若對任意,總存在,使得,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (I)求函數(shù)的對稱軸方程;

          (II)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內(nèi)角AB,C的對邊,a=2,c=4,且,求b的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)在平面直角坐標系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關于軸的對稱點.求證:

          i三點共線.

          ii

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某公司有4家直營店, , ,現(xiàn)需將6箱貨物運送至直營店進行銷售,各直營店出售該貨物以往所得利潤統(tǒng)計如下表所示根據(jù)此表,該公司獲得最大總利潤的運送方式有

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C的離心率為,且過點

          求橢圓的標準方程;

          設直線l經(jīng)過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標及定值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三棱錐中,,,,分別是的中點,上且.

          (I)求證:;

          (II)求直線與平面所成角的正弦值;

          (III)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖為陜西博物館收藏的國寶——·金筐寶鈿團花紋金杯,杯身曲線內(nèi)收,玲瓏嬌美,巧奪天工,是唐代金銀細作的典范之作.該杯型幾何體的主體部分可近似看作是雙曲線的右支與直線,,圍成的曲邊四邊形軸旋轉一周得到的幾何體,如圖分別為的漸近線與,的交點,曲邊五邊形軸旋轉一周得到的幾何體的體積可由祖恒原理(祖恒原理:冪勢既同,則積不容異).意思是:兩等高的幾何體在同高處被截得的兩截面面積均相等,那么這兩個幾何體的體積相等,那么這兩個幾何體的體積相等),據(jù)此求得該金杯的容積是_____.(杯壁厚度忽略不計)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

          (1)若,求函數(shù)的單調(diào)區(qū)間;

          (2)若,且方程內(nèi)有解,求實數(shù)的取值范圍.

          查看答案和解析>>