日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=2x+1定義在R上.
          (1)若f(x)可以表示為一個(gè)偶函數(shù)g(x)與一個(gè)奇函數(shù)h(x)之和,設(shè)h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
          (2)若p(t)≥m2-m-1對(duì)于x∈[1,2]恒成立,求m的取值范圍;
          (3)若方程p(p(t))=0無(wú)實(shí)根,求m的取值范圍.
          分析:(1)利用f(x)=g(x)+h(x)和f(-x)=g(-x)+h(-x)求出g(x)和h(x)的表達(dá)式,再求出p(t)關(guān)于t的表達(dá)式即可.
          (2)先有x∈[1,2]找出t的范圍,在把所求問(wèn)題轉(zhuǎn)化為求p(t)在[
          3
          2
          15
          4
          ]的最小值.讓大于等于m2-m-1即可.
          (3)轉(zhuǎn)化為關(guān)于p(t)的一元二次方程,利用判別式的取值,再分別討論即可.
          解答:解:(1)假設(shè)f(x)=g(x)+h(x)①,其中g(shù)(x)偶函數(shù),h(x)為奇函數(shù),
          則有f(-x)=g(-x)+h(-x),即f(-x)=g(x)-h(x)②,
          由①②解得g(x)=
          f(x)+f(-x)
          2
          ,h(x)=
          f(x)-f(-x)
          2

          ∵f(x)定義在R上,∴g(x),h(x)都定義在R上.
          g(-x)=
          f(-x)+f(x)
          2
          =g(x)
          ,h(-x)=
          f(-x)-f(x)
          2
          =-h(x)

          ∴g(x)是偶函數(shù),h(x)是奇函數(shù),∵f(x)=2x+1,
          g(x)=
          f(x)+f(-x)
          2
          =
          2x+1+2-x+1
          2
          =2x+
          1
          2x
          ,h(x)=
          f(x)-f(-x)
          2
          =
          2x+1-2-x+1
          2
          =2x-
          1
          2x

          2x-
          1
          2x
          =t
          ,則t∈R,
          平方得t2=(2x-
          1
          2x
          )2=22x+
          1
          22x
          -2
          ,∴g(2x)=22x+
          1
          22x
          =t2+2
          ,
          ∴p(t)=t2+2mt+m2-m+1.
          (2)∵t=h(x)關(guān)于x∈[1,2]單調(diào)遞增,∴
          3
          2
          ≤t≤
          15
          4

          ∴p(t)=t2+2mt+m2-m+1≥m2-m-1對(duì)于t∈[
          3
          2
          ,
          15
          4
          ]
          恒成立,
          m≥-
          t2+2
          2t
          對(duì)于t∈[
          3
          2
          ,
          15
          4
          ]
          恒成立,
          φ(t)=-
          t2+2
          2t
          ,則φ′(t)=
          1
          2
          (
          2
          t2
          -1)
          ,
          t∈[
          3
          2
          ,
          15
          4
          ]
          ,∴φ′(t)=
          1
          2
          (
          2
          t2
          -1)<0
          ,故φ(t)=-
          t2+2
          2t
          t∈[
          3
          2
          ,
          15
          4
          ]
          上單調(diào)遞減,
          φ(t)max=φ(
          3
          2
          )=-
          17
          12
          ,∴m≥-
          17
          12
          為m的取值范圍.
          (3)由(1)得p(p(t))=[p(t)]2+2mp(t)+m2-m+1,
          若p(p(t))=0無(wú)實(shí)根,即[p(t)]2+2mp(t)+m2-m+1①無(wú)實(shí)根,
          方程①的判別式△=4m2-4(m2-m+1)=4(m-1).
          1°當(dāng)方程①的判別式△<0,即m<1時(shí),方程①無(wú)實(shí)根.
          2°當(dāng)方程①的判別式△≥0,即m≥1時(shí),
          方程①有兩個(gè)實(shí)根p(t)=t2+2mt+m2-m+1=-m±
          m-1

          t2+2mt+m2+1±
          m-1
          =0
          ②,
          只要方程②無(wú)實(shí)根,故其判別式2=4m2-4(m2+1±
          m-1
          )<0
          ,
          即得-1-
          m-1
          <0
          ③,且-1+
          m-1
          <0
          ④,
          ∵m≥1,③恒成立,由④解得m<2,∴③④同時(shí)成立得1≤m<2.
          綜上,m的取值范圍為m<2.
          點(diǎn)評(píng):本題是在考查指數(shù)函數(shù)的基礎(chǔ)上對(duì)函數(shù)的恒成立問(wèn)題,函數(shù)奇偶性以及一元二次方程根的判斷的綜合考查,是一道綜合性很強(qiáng)的難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2-
          1
          x
          ,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
          (1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
          (2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•上海)已知函數(shù)f(x)=2-|x|,無(wú)窮數(shù)列{an}滿足an+1=f(an),n∈N*
          (1)若a1=0,求a2,a3,a4;
          (2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
          (3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選修4-5:不等式選講
          已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
          (Ⅰ)求實(shí)數(shù)m的值;
          (Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案