【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在某學(xué)院大一年級100名學(xué)生中進(jìn)行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占70%.這100名學(xué)生中南方學(xué)生共80人.南方學(xué)生中有20人不喜歡甜品.
(1)完成下列列聯(lián)表:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | |||
北方學(xué)生 | |||
合計(jì) |
(2)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(3)已知在被調(diào)查的南方學(xué)生中有6名數(shù)學(xué)系的學(xué)生,其中2名不喜歡甜品;有5名物理系的學(xué)生,其中1名不喜歡甜品.現(xiàn)從這兩個系的學(xué)生中,各隨機(jī)抽取2人,記抽出的4人中不喜歡甜品的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:.
【答案】(1)詳見解析;(2)有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選甜品的飲食習(xí)慣方面有差異”;(3)分布列詳見解析,數(shù)學(xué)期望為.
【解析】
(1)由南方學(xué)生共80人,南方學(xué)生中有20人不喜歡甜品,總?cè)藬?shù)為100,喜歡甜點(diǎn)的占70%,即可填表;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)求出的值,然后再結(jié)合臨界值表中的數(shù)據(jù)可得結(jié)論;
(3)根據(jù)離散型隨機(jī)變量的概率公式計(jì)算分布列和數(shù)學(xué)期望.
解:(1)
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
(2)由題意,
,
∴有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選甜品的飲食習(xí)慣方面有差異”.
(3)X的所有可能取值為0,1,2,3,
,
,
,
,
則X的分布列為
X | 0 | 1 | 2 | 3 |
P |
所以X的數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有,
,…,
這5個球隊(duì)進(jìn)行單循環(huán)比賽(全部比賽過程中任何一隊(duì)都要分別與其他各隊(duì)比賽一場且只比賽一場).當(dāng)比賽進(jìn)行到一定階段時,統(tǒng)計(jì)
,
,
,
這4個球隊(duì)已經(jīng)賽過的場數(shù)分別為:
隊(duì)4場,
隊(duì)3場,
隊(duì)2場,
隊(duì)1場,則
隊(duì)比賽過的場數(shù)為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),定直線
:
,動圓
過點(diǎn)
,且與直線
相切.
(Ⅰ)求動圓的圓心軌跡
的方程;
(Ⅱ)過點(diǎn)的直線與曲線
相交于
,
兩點(diǎn),分別過點(diǎn)
,
作曲線
的切線
,
,兩條切線相交于點(diǎn)
,求
外接圓面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將四個不同的小球放入三個分別標(biāo)有1、2、3號的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( ).
A.B.
C.
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由數(shù)字1,2,3,4,5,6組成沒有重復(fù)數(shù)字的三位數(shù),偶數(shù)共有______個,其中個位數(shù)字比十位數(shù)字大的偶數(shù)共有______個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為不同的兩點(diǎn),直線
,下列命題正確的有( ).
①不論為何值,點(diǎn)
都不在直線
上;
②若,則過點(diǎn)
的直線與直線
平行;
③若,則直線
經(jīng)過
的中點(diǎn);
④若,則點(diǎn)
在直線
的同側(cè)且直線
與線段
的延長線相交.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)
恰好是雙曲線
的一個焦點(diǎn),且兩條曲線交點(diǎn)的連線過點(diǎn)
,則該雙曲線的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的左、右焦點(diǎn)分別為
,過點(diǎn)
的直線
交
于
,
兩點(diǎn),
的周長為
,
的離心率
(Ⅰ)求的方程;
(Ⅱ)設(shè)點(diǎn),
,過點(diǎn)
作
軸的垂線
,試判斷直線
與直線
的交點(diǎn)是否恒在一條定直線上?若是,求該定直線的方程;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程
表示雙曲線;命題
不等式
的解集是
.
為假,
為真,求
的取值范圍.
【答案】
【解析】試題分析:由命題方程
表示雙曲線,求出
的取值范圍,由命題
不等式
的解集是
,求出
的取值范圍,由
為假,
為真,得出
一真一假,分兩種情況即可得出
的取值范圍.
試題解析:
真
,
真
或
∴
真
假
假
真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓
上的動點(diǎn),點(diǎn)
是
在
軸上的投影,
為
上一點(diǎn),且
.
(1)當(dāng)在圓上運(yùn)動時,求點(diǎn)
的軌跡
的方程;
(2)求過點(diǎn)且斜率為
的直線被
所截線段的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com