日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)y= x2的圖象在點(diǎn)(x0 , x02)處的切線為l,若l也為函數(shù)y=lnx(0<x<1)的圖象的切線,則x0必須滿足(
          A. <x0<1
          B.1<x0
          C. <x0
          D. <x0<2

          【答案】D
          【解析】解:函數(shù)y= x2的導(dǎo)數(shù)為y′=x, 在點(diǎn)(x0 x02)處的切線的斜率為k=x0 ,
          切線方程為y﹣ x02=x0(x﹣x0),
          設(shè)切線與y=lnx相切的切點(diǎn)為(m,lnm),0<m<1,
          即有y=lnx的導(dǎo)數(shù)為y′=
          可得x0= ,切線方程為y﹣lnm= (x﹣m),
          令x=0,可得y=lnm﹣1=﹣ x02 ,
          由0<m<1,可得x0<2,且x02>1,
          解得x0>1,
          由m= ,可得 x02﹣lnx0﹣1=0,
          令f(x)= x2﹣lnx﹣1,x>1,
          f′(x)=x﹣ >0,f(x)在x>1遞增,
          且f(2)=1﹣ln2>0,f( )= ln3﹣1= (1﹣ln3)<0,
          則有 x02﹣lnx0﹣1=0的根x0∈( ,2).
          故選:D.
          求出函數(shù)y=x2的導(dǎo)數(shù),y=lnx的導(dǎo)數(shù),求出切線的斜率,切線的方程,可得x0= ,lnm﹣1=﹣ x02 , 再由零點(diǎn)存在定理,即可得到所求范圍.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知:x、y、z是正實(shí)數(shù),且x+2y+3z=1,
          (1)求 的最小值;
          (2)求證:x2+y2+z2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(選修4﹣5:不等式選講)
          已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
          (1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
          (2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)員工500人參加學(xué)雷鋒活動(dòng),按年齡共分六組,得頻率分布直方圖如下:

          (1)現(xiàn)在要從年齡較小的第1、2、3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的各抽取多少人?

          (2)在第(1)問的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)活動(dòng),求至少有1人年齡在第3組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=cos(2x)+sin2x.

          (1)求函數(shù)f(x)的最小正周期;

          (2)求函數(shù)f(x)的最大值,并寫出f(x)取最大值時(shí)x的取值;

          (3)設(shè)A,BCABC的三個(gè)內(nèi)角,若cosB,f ()=-,且C為銳角,求sinA.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】街道旁邊有一游戲:在鋪滿邊長(zhǎng)為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規(guī)則如下:每擲一次交5角錢,若小圓板壓在正方形的邊上,可重?cái)S一次;若擲在正方形內(nèi),須再交5角錢可玩一次;若擲在或壓在塑料板的頂點(diǎn)上,可獲得一元錢,試問:

          (1)小圓板壓在塑料板的邊上的概率是多少?

          (2)小圓板壓在塑料板頂點(diǎn)上的概率是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx+ax在點(diǎn)(t,f(t))處的切線方程為y=3x+1
          (1)求a的值;
          (2)已知k≤2,當(dāng)x>1時(shí),f(x)>k(1﹣ )+2x﹣1恒成立,求實(shí)數(shù)k的取值范圍;
          (3)對(duì)于在(0,1)中的任意一個(gè)常數(shù)b,是否存在正數(shù)x0 , 使得e + x02<1?請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點(diǎn)D,交BC于E,過點(diǎn)B的圓的切線與AD的延長(zhǎng)線交于點(diǎn)F,在上述條件下,給出下列四個(gè)結(jié)論:
          ①BD平分∠CBF;
          ②FB2=FDFA;
          ③AECE=BEDE;
          ④AFBD=ABBF.

          所有正確結(jié)論的序號(hào)是(
          A.①②
          B.③④
          C.①②③
          D.①②④

          查看答案和解析>>

          同步練習(xí)冊(cè)答案