日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 是定義在R上的奇函數(shù),且對任意,當時,都有.
          (1)求證:R上為增函數(shù).
          (2)若對任意恒成立,求實數(shù)k的取值范圍.

          (1) 函數(shù),可知f(-x)=-f(x),則不等式,再結合a,b的任意性,和函數(shù)單調(diào)性定義可得證。
          (2) .              13分

          解析試題分析:(1)略       4分
          (2)由(1)知R上的單調(diào)遞增函數(shù),                
          對任意恒成立,
          ,
          ,         7分
          ,對任意恒成立,       9分
          k小于函數(shù)的最小值.        11分
          ,則
          .            13分
          考點:本試題主要是考查了抽象函數(shù)的奇偶性和單調(diào)性的綜合運用,屬于中檔題。同時結合不等式的知識考查了分析問題和解決問題的能力。
          點評:解決該試題的關鍵是對于已知中函數(shù)為奇函數(shù),能將已知的分式不等式翻譯為變量差與對應的函數(shù)值差,回歸到函數(shù)的單調(diào)性定義上判定和證明,同時利用第一問的結論,去掉抽象函數(shù)的符號,轉(zhuǎn)換為求解指數(shù)不等式的問題來得到。

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分16分)已知函數(shù)(為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)是區(qū)間上的減函數(shù)。
          (1)求上的最大值;
          (2)若恒成立,求的取值范圍;
          (3)討論關于的方程的根的個數(shù)。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù) ,的導數(shù).
          (1)當時,求的單調(diào)區(qū)間和極值;
          (2)設,是否存在實數(shù),對于任意的,存在,使得成立?若存在,求出的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          是奇函數(shù),是偶函數(shù),并且,求表達式。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)如果函數(shù)的單調(diào)減區(qū)間為,求函數(shù)的解析式;
          (2)在(1)的條件下,求函數(shù)的圖像過點的切線方程;
          (3)證明:對任意的,不等式恒成立,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (滿分12分)
          已知函數(shù),設其定義域域是.
          (1)求
          (2)求函數(shù)的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若的極值點,求實數(shù)的值;
          (Ⅱ)若上為增函數(shù),求實數(shù)的取值范圍;
          (Ⅲ)當時,方程有實根,求實數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (14分)已知函數(shù),其中常數(shù)。
          (1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
          (2)當時,是否存在實數(shù),使得直線恰為曲線的切線?若存在,求出的值;若不存在,說明理由;
          (3)設定義在上的函數(shù)的圖象在點處的切線方程為,當時,若內(nèi)恒成立,則稱為函數(shù)的“類對稱點”。當,試問是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (10分)知函數(shù)是定義在上的奇函數(shù),且當時,+1.
          (1)計算,; 。2)當時,求的解析式.

          查看答案和解析>>

          同步練習冊答案