日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2-ax+a(a∈R)同時(shí)滿足:①不等式f(x)≤0 的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=f(n).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足ci-ci+1<0的正整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號(hào)數(shù),令cn=1-
          aan
          (n為正整數(shù)),求數(shù)列{cn}的變號(hào)數(shù).
          分析:(1)根據(jù)f(x)≤0的解集有且只有一個(gè)元素,可得△等于0,從而可求a的值,即可求出函數(shù)解析式,從而可求數(shù)列{an}的通項(xiàng)公式;
          (2))根據(jù)cn=1-
          a
          an
          ,可得cn=
          -3,n=1
          1-
          4
          2n-5
          ,n≥2
          ,驗(yàn)證n≥3時(shí),數(shù)列{cn}遞增,確定n≥3時(shí),有且只有1個(gè)變號(hào)數(shù);判斷n≤2時(shí)變號(hào)數(shù)有2個(gè),最后綜合答案可得.
          解答:解:(1)∵f(x)≤0的解集有且只有一個(gè)元素,
          ∴△=a2-4a=0
          ∴a=0或4,
          當(dāng)a=0時(shí),函數(shù)f(x)=x2在(0,+∞)上遞增,故不存在0<x1<x2,使得不等式f(x1)>f(x2)成立;
          當(dāng)a=4時(shí),函數(shù)f(x)=x2-4x+4在(0,2)上遞減,故存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
          綜上,得a=4,f(x)=x2-4x+4,∴Sn=n2-4n+4
          n≥2 時(shí),an=Sn-Sn-1=2n-5,n=1 時(shí),a1=1
          ∴an=
          1,n=1
          2n-5,n≥2

          (2)∵cn=1-
          a
          an
          ,
          cn=
          -3,n=1
          1-
          4
          2n-5
          ,n≥2

          ∵n≥3時(shí),Cn+1-Cn=
          4
          2n-5
          -
          4
          2n-3
          =
          8
          (2n-5)(2n-3)
          >0,
          ∴n≥3時(shí),數(shù)列{cn}遞增,
          ∵a4=-
          1
          3
          <0,由1-
          4
          2n-5
          >0
          n≥5,可知a4-a5<0,即n≥3時(shí),有且只有1個(gè)變號(hào)數(shù);
          又∵C1=-3,C2=-5,C3=-3,即C1-C2<0,C2-C3<0,
          ∴此處變號(hào)數(shù)有2個(gè).
          綜上得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.
          點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合,考查數(shù)列的通項(xiàng),考查新定義,解題的關(guān)鍵是理解新定義,判斷數(shù)列的單調(diào)性,從而確定數(shù)列的變號(hào)數(shù).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案