日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二階矩陣M=
          1?b
          c?1
          ,矩陣M對(duì)應(yīng)的變換將點(diǎn)(2,1)變換成點(diǎn)(4,-1).求矩陣M將圓x2+y2=1變換后的曲線方程.
          分析:先根據(jù)矩陣M對(duì)應(yīng)的變換將點(diǎn)(2,1)變換成點(diǎn)(4,-1),建立二元一次方程組求出矩陣M,然后建立點(diǎn)圓x2+y2=1上的任意一點(diǎn)P(x,y),變換后的點(diǎn)為P'(x',y')的關(guān)系,將點(diǎn)P(x,y)的坐標(biāo)代入圓的方程即可求出.
          解答:解:由已知得M
          2
          1
          =
          4
          -1
          ,即
          1b
          c1
          2
          1
          =
          4
          -1

          2+b=4
          2c+1=-1
          ,解得
          b=2
          c=-1
          M=
          12
          -11

          設(shè)點(diǎn)P(x,y)是圓x2+y2=1上的任意一點(diǎn),變換后的點(diǎn)為P'(x',y')
          M
          x
          y
          =
          x′
          y′
          ,
          所以
          x′=x+2y
          y′=-x+y
          從而
          x=
          1
          3
          (x′-2y′)
          y=
          1
          3
          (x′+y′)

          代入x2+y2=1得(x'-2y')2+(x'+y')2=9
          化簡得2x2-2xy+5y2-9=0
          點(diǎn)評(píng):本題主要考查矩陣與變換、曲線在矩陣變換下的曲線的方程,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:(幾何證明選講)
          如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
          AB與OP交于點(diǎn)M,設(shè)CD為過點(diǎn)M且不過圓心O的一條弦,
          求證:O,C,P,D四點(diǎn)共圓.
          B.選修4-2:(矩陣與變換)
          已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
           
          1
          1
          ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
          C.選修4-4:(坐標(biāo)系與參數(shù)方程)
          在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
          2
          sin(θ-
          π
          4
          ),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被曲線C所截得的弦長.
          D.選修4-5(不等式選講)
          已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二階矩陣M=(
          a1
          0b
          )有特征值λ1=2及對(duì)應(yīng)的一個(gè)特征向量
          e
          1
          =
          1
          1

          (Ⅰ)求矩陣M;
          (II)若
          a
          =
          2
          1
          ,求M10
          a

          (2)已知直線l:
          x=1+
          1
          2
          t
          y=
          3
          2
          t
          (t為參數(shù)),曲線C1
          x=cosθ
          y=sinθ
            (θ為參數(shù)).
          (Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
          (Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的
          1
          2
          倍,縱坐標(biāo)壓縮為原來的
          3
          2
          倍,得到曲線C2C,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
          (3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
          (Ⅰ)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域;
          (Ⅱ)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          [選做題]已知二階矩陣M屬于特征值3的一個(gè)特征向量為
          e
          =
          1
          1
          ,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變成點(diǎn)(9,15),求出矩陣M.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-2:矩陣與變換
          已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
          e1
          =
          1
          1
          ,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案