日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          已知函數f(x)=x2-2ax-3a2,(a>
          14

          (1)若a=1,求函數f(x)的值域;
          (2)若對于任意x∈[1,4a]時,-4a≤f(x)≤4a恒成立,求實數a的取值范圍.
          分析:(1)把二次函數f(x)的解析式配方,利用配方法求函數的值域.
          (2)函數f(x)的對稱軸為 x=a,分a≥1時和1>a>
          1
          4
          兩種情況求出函數f(x)在區(qū)間[1,4a]上的值域,由-4a≤f(x)≤4a恒成立可得,f(x)的最小值大于或等于-4a,最大值小于或等于4a,解不等式組求得實數a的取值范圍.
          解答:解:(1)∵a=1,
          ∴函數f(x)=x2-2ax-3a2=x2-2x-3=(x-1)2-4≥-4,
          故函數的值域為[-4,+∞).
          (2)函數f(x)=x2-2ax-3a2=(x-a)2-4a2,對稱軸為 x=a.
          當a≥1時,在區(qū)間[1,4a]上,函數f(x)最小值為-4a2,最大值為5a2,由題意得
          -4a2≥-4a 且 5a2≤4a,顯然 a無解.
          當1>a>
          1
          4
          時,函數f(x)在[1,4a]上是增函數,最小值為1-2a-3a2,最大值為 5a2
          由題意得1-2a-3a2≥-4a  且 5a2≤4a.  解得 
          1
          4
          a≤
          4
          5
          ,故實數a的取值范圍為 (
          1
          4
          ,
          4
          5
          ]
          點評:本題考查求二次函數在閉區(qū)間上的值域,函數的恒成立問題,體現(xiàn)了分類討論的數學思想,求函數f(x)在區(qū)間[1,4a]上的值域是解題的難點.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2012•深圳一模)已知函數f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2011•上海模擬)已知函數f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數學 來源:上海模擬 題型:解答題

          已知函數f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數學 來源:深圳一模 題型:解答題

          已知函數f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

          查看答案和解析>>

          同步練習冊答案