日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)實(shí)數(shù)x、y滿足x2+(y-1)2=1,令數(shù)學(xué)公式,若x+y+c>0恒成立,求實(shí)數(shù)c的取值范圍.

          解:由題意可得 x+y=cosθ+sinθ+1=+1,
          要使x+y+c>0恒成立,需 c>--1恒成立,
          故 c 大于--1的最大值.
          而--1的最大值為,故c>,
          故實(shí)數(shù)c的取值范圍為(,+∞).
          分析:利用兩角和的正弦公式化簡(jiǎn)x+y為 +1,要使x+y+c>0恒成立,需c>--1恒成立,故c 應(yīng)大于--1的最大值,由正弦函數(shù)的值域知- 的最大值等于,從而得到c的取值范圍.
          點(diǎn)評(píng):本題主要考查函數(shù)的恒成立問(wèn)題,正弦函數(shù)的最值的求法,得到c 大于--1的最大值,是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          16、設(shè)實(shí)數(shù)x,y滿足x2+2xy-1=0,則x+y的取值范圍是
          (-∞,-1]∪[1,∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)實(shí)數(shù)x,y滿足x2-y2+x+3y-2≥0,當(dāng)x∈[-2,2]時(shí),x+y的最大值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)實(shí)數(shù)x,y滿足x2+(y-1)2=1,若不等式x+y+C≥0對(duì)任意的x,y都成立,則實(shí)數(shù)C的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)實(shí)數(shù)x,y滿足x2+(y-2)2=1,若對(duì)滿足條件x,y,不等式x2+y2+c≤0恒成立,則c的取值范圍是
          c≤-9
          c≤-9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)實(shí)數(shù)x,y 滿足x2+y2+xy=1,求x+y的最大值.
          題設(shè)條件“x2+y2+xy=1”有以下兩種等價(jià)變形:
          (x+
          y
          2
          )2+(
          3
          2
          y)2=1
          ;
          ②x2+y2-2xycos120°=1.
          請(qǐng)按上述變形提示,用兩種不同的方法分別解答原題.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案