日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

          1求橢圓的方程;

          2過點(diǎn)的直線,交橢圓兩點(diǎn),點(diǎn)在橢圓上,坐標(biāo)原點(diǎn)恰為的重心,求直線的方程.

          【答案】(1);(2)

          【解析】試題分析:(1)由題意可得, ,運(yùn)用勾股定理可得,再由橢圓的定義可得,由, 的關(guān)系可得,進(jìn)而得到橢圓方程;(2)顯然直線軸不垂直,設(shè), , ,代入橢圓方程,運(yùn)用韋達(dá)定理和三角形的重心坐標(biāo)公式可得M的坐標(biāo),代入橢圓方程,解方程即可得到所求直線的方程

          試題解析:(1)由題意可得,左焦點(diǎn), ,所以,即,即, ,故橢圓的方程為

          (2)顯然直線軸不垂直,設(shè), ,將的方程代入,可得,所以的中點(diǎn) ,由坐標(biāo)原點(diǎn)恰為的重心,可得 ,由點(diǎn)上,可得,解得(舍),即,故直線的方程為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QAQA=AB=PD.

          I)證明:平面PQC⊥平面DCQ

          II)求二面角Q-BP-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出四個函數(shù):①;②;③;④,從其中任選個,則事件:“所選個函數(shù)圖象有且僅有個公共點(diǎn)”的概率是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于數(shù)列,若是與無關(guān)的常數(shù),)則稱數(shù)列叫做弱等差數(shù)列已知數(shù)列滿足:,對于恒成立,(其中都是常數(shù))

          1)求證:數(shù)列弱等差數(shù)列,并求出數(shù)列的通項(xiàng)公式

          2)當(dāng)時,若數(shù)列是單調(diào)遞增數(shù)列,求的取值范圍

          3)若,且,數(shù)列滿足:,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù))在上恒正,則實(shí)數(shù)的取值范圍為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)、、、),都在函數(shù),)的圖像上;

          1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等比數(shù)列;

          2)設(shè),函數(shù)的反函數(shù)為,若函數(shù)與函數(shù)的圖像有公共點(diǎn),求證:在直線上;

          3)設(shè),),過點(diǎn)的直線與兩坐標(biāo)軸圍成的三角形面積為,問:數(shù)列是否存在最大項(xiàng)?若存在,求出最大項(xiàng)的值,若不存在,請說明理由;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線、與平面、滿足,,則下列命題中正確的是(

          A.的充分不必要條件

          B.的充要條件

          C.設(shè),則的必要不充分條件

          D.設(shè),則的既不充分也不必要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運(yùn)動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻(xiàn),公司還獲得了相應(yīng)的廣告效益.據(jù)測算,首日參與活動人數(shù)為人,以后每天人數(shù)比前一天都增加,天后捐步人數(shù)穩(wěn)定在第天的水平,假設(shè)此項(xiàng)活動的啟動資金為萬元,每位捐步者每天可以使公司收益元(以下人數(shù)精確到人,收益精確到元).

          1)求活動開始后第天的捐步人數(shù),及前天公司的捐步總收益;

          2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (Ⅰ)求橢圓方程;

          (Ⅱ)設(shè)為橢圓右頂點(diǎn),過橢圓的右焦點(diǎn)的直線與橢圓交于,兩點(diǎn)(異于),直線,分別交直線,兩點(diǎn). 求證:兩點(diǎn)的縱坐標(biāo)之積為定值.

          查看答案和解析>>

          同步練習(xí)冊答案