【題目】如圖所示,在平面直角坐標(biāo)系中,第一象限內(nèi)有定點(diǎn)
和射線
,已知
,
的傾斜角分別為
,
,
,
,
軸上的動點(diǎn)
與
,
共線.
(1)求點(diǎn)坐標(biāo)(用
表示);
(2)求面積
關(guān)于
的表達(dá)式
;
(3)求面積的最小時直線
的方程.
【答案】(1);(2)
;(3)見解析
【解析】
(1)由題易知,可得C點(diǎn)坐標(biāo);
(2)由題易知直線, 設(shè)
,
共線,即斜率相等,可得
,再利用面積公式求得結(jié)果;
(3)由(2)易知,將分母看做關(guān)于
的二次函數(shù),求最值即可得出結(jié)果.
(1) ,又
(2)直線,設(shè)
共線,∴
解得:,∴
(3)法一、
記
(ⅰ)若即
,函數(shù)
在
上遞減,當(dāng)且僅當(dāng)
即
時
取得最小值,此時
,直線
的方程為:
(ⅱ)若即
,函數(shù)
在
上遞增,
上遞減,當(dāng)且僅當(dāng)
即
時
取得最小值,此時
,直線
的方程為:
法二、記,
以下用單調(diào)性的定義證明“對勾”函數(shù)的單調(diào)性(略)
(ⅰ)若,
,
在
上遞減,當(dāng)且僅當(dāng)
即
時
取得最小值,此時
,直線
的方程為:
(ⅱ)若,
,
在
上遞減, 在
上遞增,
當(dāng)且僅當(dāng)即
時
取得最小值,此時
,直線
的方程為:
(法二中“對勾”函數(shù)的單調(diào)性未證明的不扣分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化.某調(diào)查機(jī)構(gòu)隨機(jī)抽取8名購物者進(jìn)行采訪,4名男性購物者中有3名傾向于網(wǎng)購,1名傾向于選擇實(shí)體店,4名女性購物者中有2名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店.
(1)若從8名購物者中隨機(jī)抽取2名,其中男女各一名,求至少1名傾向于選擇實(shí)體店的概率:
(2)若從這8名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:l可以多次出現(xiàn)),則n的所有不同值的個數(shù)為
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(Ⅰ)寫出C的直角坐標(biāo)方程,并指出C是什么曲線;
(Ⅱ)設(shè)直線l與曲線C相交于P、Q兩點(diǎn),求|PQ|值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域?yàn)?/span>[logmm(β-1),logm(α-1)]?若存在,求出此時m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對任意
,都有
.
(1)若函數(shù)的頂點(diǎn)坐標(biāo)為
且
,求
的解析式;
(2)函數(shù)的最小值記為
,求函數(shù)
在
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1C1CA;
(Ⅱ)設(shè)D是A1C1的中點(diǎn),判斷并證明在線段BB1上是否存在點(diǎn)E,使DE∥平面ABC1;若存在,求三棱錐E﹣ABC1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}前n項(xiàng)和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(Ⅰ)求證數(shù)列{an}是首項(xiàng)為1的等比數(shù)列;
(Ⅱ)當(dāng)a2=2時,是否存在等差數(shù)列{bn},使得a1bn+a2bn﹣1+a3bn﹣2+…+anb1=2n+1﹣n﹣2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E:﹣
=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動直線l分別交直線l1 , l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com