日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù), .

          (1)證明: ;

          (2)根據(jù)(1)證明: .

          (B)已知函數(shù), .

          (1)用分析法證明: ;

          (2)證明: .

          【答案】(A)(1)詳見(jiàn)解析;(2)詳見(jiàn)解析. (B)(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

          【解析】試題分析:(A)(1)要證原不等式成立,先將函數(shù)的表達(dá)式代入原不等式,兩邊乘以,可以得到一個(gè)顯然成立的結(jié)論,由此證得原不等式成立.(2)利用(1)的結(jié)論,將(1)右邊的二次函數(shù)配方,求出其最小值,由此可證得,而,綜上所述, .(B)(1)(1)要證原不等式成立,先將函數(shù)的表達(dá)式代入原不等式,兩邊乘以,可以得到一個(gè)顯然成立的結(jié)論,由此證得原不等式成立.(2)由于時(shí),有,所以,令,利用導(dǎo)數(shù)求得的最大值為,由此證得.

          試題解析:

          (A)解(1)由

          要證,

          只需證

          只需證,

          只需證,因?yàn)?/span>成立,所以成立.

          (2)因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

          ,

          所以由(1)得.

          (B)解(1)由,

          要證,

          只需證

          只需證,

          只需證,因?yàn)?/span>成立,所以成立.

          (2)證法1 由

          ,

          設(shè),

          上為增函數(shù),

          所以.

          證法2 由,

          設(shè), ,則,設(shè),

          ,

          ,∴,則時(shí)為增函數(shù),

          ,

          ∴存在,使得,即,

          時(shí), 為減函數(shù), 時(shí), , 為增函數(shù),

          , 時(shí), 有最大值0,即成立.

          成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(1)求過(guò)點(diǎn)且在兩個(gè)坐標(biāo)軸上截距相等的直線方程。

          (2)已知圓心為的圓經(jīng)過(guò)點(diǎn),且圓心在直線上,求圓心為的圓的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某大學(xué)開(kāi)設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒(méi)有選修的課程門數(shù)的乘積.

          (1函數(shù)上的偶函數(shù)為事件,求事件的概率;

          (2)求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某投資公司擬投資開(kāi)發(fā)某項(xiàng)新產(chǎn)品,市場(chǎng)評(píng)估能獲得10~1 000萬(wàn)元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1萬(wàn)元,同時(shí)不超過(guò)投資收益的20%.

          (1) 設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為f(x),試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型f(x)的基本要求;

          (2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎(jiǎng)勵(lì)方案的模型函數(shù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.

          1 求橢圓的方程;

          2 設(shè)直線與橢圓交于、兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長(zhǎng)為6的等腰直角三角形,俯視圖是正方形

          請(qǐng)畫出該幾何體的直觀圖,并求出它的體積;

          用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體ABCDA1B1C1D1? 如何組拼?試證明你的結(jié)論;

          的情形下,設(shè)正方體ABCDA1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知

          討論的單調(diào)性;

          存在兩個(gè)極值點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā),乙從乘纜車到,處停留,再?gòu)?/span>勻速步行到,假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路長(zhǎng)為1260經(jīng)測(cè)量,

          1求索道的長(zhǎng);

          2問(wèn):乙出發(fā)多少,乙在纜車上與甲的距離最短?

          3為使兩位游客在處互相等待的時(shí)間不超過(guò),乙步行的速度應(yīng)控制在什么范圍內(nèi)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知命題p:指數(shù)函數(shù)y(1a)x是R上的增函數(shù),命題q不等式ax2+2x-1>0有解若命題p是真命題,命題q是假命題,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案