日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個條件: ①對任意正數(shù)x,y,都有f(xy)=f(x)+f(y);
          ②當x>1時,f(x)>0;
          ③f(3)=1,
          (1)求f(1), 的值;
          (2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)性,并用定義給出證明;
          (3)對于定義域內(nèi)的任意實數(shù)x,f(kx)+f(4﹣x)<2(k為常數(shù),且k>0)恒成立,求正實數(shù)k的取值范圍.

          【答案】
          (1)解:令x=y=1,得f(1)=0,令x=3,

          ,所以


          (2)解:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,證明如下

          任取x1,x2∈(0,+∞),且x1<x2,

          則f(x1)﹣f(x2)= ,

          因為x1,x2∈(0,+∞),且x1<x2,則 ,又x>1時,f(x)>0,

          所以 ,即f(x1)<f(x2),

          函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增


          (3)解:f(9)=f(3)+f(3)=2,

          由(2)知函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增

          不等式f(kx)+f(4﹣x)<2可化為f(kx(4﹣x))<f(9),因為k>0

          不等式故可化為 ,

          由題可得,0<x<4時,kx(4﹣x)<9恒成立,

          即0<x<4時, 恒成立, 0<x<4,y=x(4﹣x)∈(0,4],

          所以

          所以


          【解析】(1)利用賦值法即可求f(1), 的值;(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)性;(3)根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)將不等式進行轉(zhuǎn)化求解即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點,P,Q是單位圓上兩點,O是坐標原點,且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點Q的坐標是 ,求 的值;
          (Ⅱ)設(shè)函數(shù) ,求f(α)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=1﹣ 在R上是奇函數(shù).
          (1)求a;
          (2)對x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求實數(shù)s的取值范圍;
          (3)令g(x)= ,若關(guān)于x的方程g(2x)﹣mg(x+1)=0有唯一實數(shù)解,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xlnx.
          (1)求f(x)的單調(diào)區(qū)間和極值;
          (2)若對任意 恒成立,求實數(shù)m的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< , (Ⅰ)求tan2α的值;
          (Ⅱ)求β.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等差數(shù)列前三項為a,4,3a,前n項的和為Sn , 若Sk=90.
          (1)求a及k的值;
          (2)設(shè)bn= ,求數(shù)列{bn}的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列選項中,說法正確的個數(shù)是( )

          ①命題“”的否定為“”;

          ②命題“在中, ,則”的逆否命題為真命題;

          ③設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的充分必要條件;

          ④若統(tǒng)計數(shù)據(jù)的方差為,則的方差為

          ⑤若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)絕對值越接近1.

          A. 1個 B. 2個 C. 3個 D. 4個

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論: ①當x>1時,甲走在最前面;
          ②當x>1時,乙走在最前面;
          ③當0<x<1時,丁走在最前面,當x>1時,丁走在最前面;
          ④丙不可能走在最前面,也不可能走在最后面;
          ⑤如果它們一直運動下去,最終走在最前面的是甲.
          其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l過點M(1,2),且直線l與x軸正半軸和y軸的正半軸交點分別是A、B,(如圖,注意直線l與坐標軸的交點都在正半軸上)

          (1)若三角形AOB的面積是4,求直線l的方程.
          (2)求過點N(0,1)且與直線l垂直的直線方程.

          查看答案和解析>>

          同步練習(xí)冊答案