日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且(Sn﹣1)2=anSn(n∈N*).
          (1)求S1 , S2 , S3的值;
          (2)求出Sn及數(shù)列{an}的通項(xiàng)公式;
          (3)設(shè)bn=(﹣1)n1(n+1)2anan+1(n∈N*),求數(shù)列{bn}的前n項(xiàng)和為T(mén)n

          【答案】
          (1)解:∵(Sn﹣1)2=anSn(n∈N*),

          ∴n≥2時(shí),(Sn﹣1)2=(Sn﹣Sn1)Sn(n∈N*).

          ∴n=1時(shí), ,解得a1= =S1

          n=2時(shí), ,解得S2=

          同理可得:S3=


          (2)解:由(1)可得:n≥2時(shí),(Sn﹣1)2=(Sn﹣Sn1)Sn(n∈N*).

          化為:Sn= .(*)

          猜想Sn=

          n≥2時(shí),代入(*),左邊= ;右邊= = ,

          ∴左邊=右邊,猜想成立,n=1時(shí)也成立.

          ∴n≥2時(shí),an=Sn﹣Sn1= = ,n=1時(shí)也成立.

          ∴Sn= ,an=


          (3)解:bn=(﹣1)n1(n+1)2anan+1(n∈N*)=(﹣1)n1 =(﹣1)n1 ,

          ∴n=2k(k∈N*)時(shí),數(shù)列{bn}的前n項(xiàng)和為

          Tn= + +…+

          = =

          n=2k﹣1(k∈N*)時(shí),數(shù)列{bn}的前n項(xiàng)和為

          Tn= + +…﹣ +

          = = +

          ∴Tn= ×


          【解析】(1)由(Sn﹣1)2=anSn(n∈N*),分別取n=1,2,3即可得出.(2)由(1)可得:n≥2時(shí),(Sn﹣1)2=(Sn﹣Sn1)Sn(n∈N*).化為:Sn= .猜想Sn= .代入驗(yàn)證即可得出.(3)bn=(﹣1)n1(n+1)2anan+1(n∈N*)=(﹣1)n1 =(﹣1)n1 ,對(duì)n分類(lèi)討論,利用“裂項(xiàng)求和”方法即可得出.
          【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當(dāng)θ變化時(shí),mn的最大值是(

          A.2
          B.4
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法正確的是( ).

          A. ,“”是“”的必要不充分條件

          B. 為真命題”是“為真命題” 的必要不充分條件

          C. 命題“,使得”的否定是:“

          D. 命題:“”,則是真命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在數(shù)列{ }中,已知,,則等于(  )

          A. B. C. D.

          【答案】B

          【解析】

          將數(shù)列的等式關(guān)系兩邊取倒數(shù)是公差為的等差數(shù)列,再根據(jù)等差數(shù)列求和公式得到數(shù)列通項(xiàng),再取倒數(shù)即可得到數(shù)列{}的通項(xiàng).

          將等式兩邊取倒數(shù)得到,是公差為的等差數(shù)列,=,根據(jù)等差數(shù)列的通項(xiàng)公式的求法得到,=.

          故答案為:B.

          【點(diǎn)睛】

          這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法,數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;還有構(gòu)造新數(shù)列的方法,取倒數(shù),取對(duì)數(shù)的方法等等.

          型】單選題
          結(jié)束】
          9

          【題目】在如圖所示的銳角三角形空地中, 欲建一個(gè)面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長(zhǎng)x(單位m)的取值范圍是 ( )

          (A) [15,20](B) [12,25] (C) [10,30](D) [20,30]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列是遞增數(shù)列,且對(duì),都有,則實(shí)數(shù)的取值范圍是

          A. B. C. D.

          【答案】D

          【解析】

          {an}是遞增數(shù)列,得到an+1>an,再由“an=n2+λn恒成立轉(zhuǎn)化為“λ>﹣2n﹣1對(duì)于nN*恒成立求解.

          ∵{an}是遞增數(shù)列,

          ∴an+1>an,

          ∵an=n2+λn恒成立

          即(n+1)2+λ(n+1)>n2+λn,

          ∴λ>﹣2n﹣1對(duì)于nN*恒成立.

          而﹣2n﹣1n=1時(shí)取得最大值﹣3,

          ∴λ>﹣3,

          故選:D.

          【點(diǎn)睛】

          本題主要考查由數(shù)列的單調(diào)性來(lái)構(gòu)造不等式,解決恒成立問(wèn)題.研究數(shù)列單調(diào)性的方法有:比較相鄰兩項(xiàng)間的關(guān)系,將an+1an做差與0比較,即可得到數(shù)列的單調(diào)性;研究數(shù)列通項(xiàng)即數(shù)列表達(dá)式的單調(diào)性.

          型】單選題
          結(jié)束】
          13

          【題目】已知數(shù)列{an}滿(mǎn)足a1=1,且anan1+2n1 (n≥2 ),則a20________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需把函數(shù)y=sin(2x+ )的圖象(
          A.向左平移 個(gè)長(zhǎng)度單位
          B.向右平移 個(gè)長(zhǎng)度單位
          C.向左平移 個(gè)長(zhǎng)度單位
          D.向右平移 個(gè)長(zhǎng)度單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.

          (1)anbn;

          (2)

          【答案】(1)an=2n+1,bn=8n1.(2)

          【解析】

          (1)設(shè){an}的公差為d,{bn}的公比為q,由題設(shè)條件建立方程組,解方程組得到dq的值,從而求出anbn;(2)由Sn=n(n+2),知,由此可求出的值.

          (1)設(shè){an}的公差為d,{bn}的公比為q,則d為正數(shù),

          an=3+(n-1)dbnqn1,

          依題意有

          解得 (舍去).

          an=3+2(n-1)=2n+1,bn=8n1.

          (2)Sn=3+5+…+(2n+1)=n(n+2).

          所以+…++…+

          (1-+…+)

          (1+)

          .

          【點(diǎn)睛】

          這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。

          型】解答
          結(jié)束】
          21

          【題目】已知函數(shù)f(x)滿(mǎn)足f(xy)=f(xf(y),且f(1)=.

          (1)當(dāng)nN,求f(n)的表達(dá)式;

          (2)設(shè)annf(n),nN,求證:a1a2+…+an<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知有限集,如果A中元素,滿(mǎn)足,就稱(chēng)A創(chuàng)新集;

          1)若,試寫(xiě)出一個(gè)二元創(chuàng)新集A

          2)若,且是二元創(chuàng)新集,求的取值范圍;

          3)若是正整數(shù),求出所有的創(chuàng)新集;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當(dāng)x≥0時(shí),f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案