日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖, 在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,點(diǎn)DAB的中點(diǎn),  (I)求證:(I)ACBC1; 

          (II)求證:AC 1//平面CDB1;

          解法一:(I)直三棱柱ABCA1B1C1,底面三邊長(zhǎng)AC=3,BC=4AB=5,

          ACBC,且BC1在平面ABC內(nèi)的射影為BC,∴ ACBC1;

          (II)設(shè)CB1C1B的交點(diǎn)為E,連結(jié)DE,∵ D是AB的中點(diǎn),E是BC1的中點(diǎn),∴ DE//AC1,∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1;

          解法二:∵直三棱柱ABCA1B1C1底面三邊長(zhǎng)AC=3,BC=4,AB=5,∴AC、BCC1C兩兩垂直,如圖,以C為坐標(biāo)原點(diǎn),直線CA、CB、C1C分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,則C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)

          (1)∵=(-3,0,0),=(0,-4,0),∴??=0,∴ACBC1.

          (2)設(shè)CB1C1B的交戰(zhàn)為E,則E(0,2,2).∵=(-,0,2),=(-3,0,4),∴,∴DE∥AC1.


          解析:

          (1)證明線線垂直方法有兩類:一是通過(guò)三垂線定理或逆定理證明,二是通過(guò)線面垂直來(lái)證明線線垂直;(2)證明線面平行也有兩類:一是通過(guò)線線平行得到線面平行,二是通過(guò)面面平行得到線面平行.

          點(diǎn)評(píng):平行問(wèn)題的轉(zhuǎn)化:

          面面平行線面平行線線平行;

          主要依據(jù)是有關(guān)定義及判定定理和性質(zhì)定理.?

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=a,AC=2,AA1=1,點(diǎn)D在棱B1C1上且B1D:DC1=1:3
          (1)證明:無(wú)論a為任何正數(shù),均有BD⊥A1C;
          (2)當(dāng)a為何值時(shí),二面角B-A1D-B1為60°.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中點(diǎn).
          (1)求AC1與平面B1BCC1所成角的正切值;
          (2)求證:AC1∥平面B1DC;
          (3)已知E是A1B1的中點(diǎn),點(diǎn)P為一動(dòng)點(diǎn),記PB1=x.點(diǎn)P從E出發(fā),沿著三棱柱的棱,按照E→A1→A的路線運(yùn)動(dòng)到點(diǎn)A,求這一過(guò)程中三棱錐P-BCC1的體積表達(dá)式V(x).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=a,E是A1C1的中點(diǎn),F(xiàn)是AB中點(diǎn).
          (1)求證:EF∥面BB1C1C;
          (2)求直線EF與直線CC1所成角的正切值;
          (3)設(shè)二面角E-AB-C的平面角為θ,求tanθ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖:在直三棱柱ABC-DEF中,AB=2,AC=AD=2
          3
          ,AB⊥AC,
          (1)證明:AB⊥DC,
          (2)求二面角A-DC-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,A1A=AC=
          2
          AB
          ,AB=BC=a,D為BB1的中點(diǎn).
          (1)證明:平面ADC1⊥平面ACC1A1;
          (2)求平面ADC1與平面ABC所成的二面角大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案