日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形,
          (Ⅰ)求證:MD∥平面APC;
          (Ⅱ)求證:平面ABC⊥平面APC.

          【答案】分析:(Ⅰ)∵M(jìn)為AB中點(diǎn),D為PB中點(diǎn),由中位線定理得MD∥AP,由線面平行的判定證得MD∥平面APC;
          (Ⅱ)先證得AP⊥BC,又有AC⊥BC,通過線面垂直的判定證出BC⊥平面APC,再由面面垂直的判定證出平面ABC⊥平面PAC.
          解答:證明:(Ⅰ)∵M(jìn)為AB中點(diǎn),D為PB中點(diǎn),
          ∴MD∥AP,
          又MD?平面ABC,
          ∴MD∥平面APC.
          (Ⅱ)∵△PMB為正三角形,且D為PB中點(diǎn),
          ∴MD⊥PB.
          又由(Ⅰ)知MD∥AP,
          ∴AP⊥PB.
          又已知AP⊥PC,PB∩PC=P
          ∴AP⊥平面PBC,而BC包含于平面PBC,
          ∴AP⊥BC,
          又AC⊥BC,而AP∩AC=A,
          ∴BC⊥平面APC,
          又BC包含于平面ABC
          ∴平面ABC⊥平面PAC.
          點(diǎn)評(píng):本題主要是通過線線、線面、面面之間的關(guān)系的轉(zhuǎn)化來考查線線、線面、面面的判定定理.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
          3
          ,BD=CD=1,另一個(gè)側(cè)面是正三角形.
          (1)求證:AD⊥BC.
          (2)求二面角B-AC-D的大小.
          (3)在直線AC上是否存在一點(diǎn)E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
          2
          ,動(dòng)點(diǎn)D在線段AB上.
          (Ⅰ)求證:平面COD⊥平面AOB;
          (Ⅱ)當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AB的中點(diǎn)時(shí),求二面角D-CO-B的大;
          (Ⅲ)當(dāng)CD與平面AOB所成角最大時(shí),求三棱錐C-OBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點(diǎn)E在BC上,且AE⊥AC.
          (Ⅰ)求證:AC⊥DE;
          (Ⅱ)求點(diǎn)B到平面ACD的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,∠OAB=
          π6
          ,斜邊AB=4,動(dòng)點(diǎn)D在斜邊AB上.
          (1)求證:平面COD⊥平面AOB;
          (2)當(dāng)D為AB的中點(diǎn)時(shí),求:異面直線AO與CD所成角大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
          3
          ,BD=CD=1,另一個(gè)側(cè)面是正三角形
          (1)求證:AD⊥BC
          (2)求二面角B-AC-D的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案