日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點(diǎn)E在BC上,且AE⊥AC.
          (Ⅰ)求證:AC⊥DE;
          (Ⅱ)求點(diǎn)B到平面ACD的距離.
          分析:(1)由線面垂直的性質(zhì),證出AD⊥AC,結(jié)合AE⊥AC,從而AC⊥平面ADE,進(jìn)而得到AC⊥DE;
          (2)過B點(diǎn)作BF⊥AC,垂足為F,利用線面垂直的判定與性質(zhì)證出BF⊥平面ACD,則BF的長為點(diǎn)B到平面ACD的距離,再在Rt△ABF中利用三角函數(shù)的定義,即可算出點(diǎn)B到平面ACD的距離.
          解答:解:(I)∵DA⊥平面ABC,AC?平面ABC,
          ∴AD⊥AC,…(2分)
          ∵AE⊥AC,AE、AD是平面ADE內(nèi)的相交直線,
          ∴AC⊥平面ADE,
          ∵DE?平面ADE,∴AC⊥DE.…(6分)
          (II)過B點(diǎn)作AC的垂線,垂足為F,
          ∵DA⊥平面ABC,BF?平面ABC,∴AD⊥BF
          ∵AC⊥BF,AC、AD是平面ACD內(nèi)的相交直線,
          ∴BF⊥平面ACD,
          因此BF的長為點(diǎn)B到平面ACD的距離,
          在Rt△ABF中,AB=2,∠BAF=180°-120°=60°,
          ∴BF=ABsin60°=2×
          3
          2
          =
          3
          ,即點(diǎn)B到平面ACD的距離為
          3
          點(diǎn)評(píng):本題給出特殊三棱錐,求證線面垂直并求點(diǎn)到平面的距離.著重考查了空間線面垂直的判定與性質(zhì),及其應(yīng)用等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
          3
          ,BD=CD=1,另一個(gè)側(cè)面是正三角形.
          (1)求證:AD⊥BC.
          (2)求二面角B-AC-D的大。
          (3)在直線AC上是否存在一點(diǎn)E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
          2
          ,動(dòng)點(diǎn)D在線段AB上.
          (Ⅰ)求證:平面COD⊥平面AOB;
          (Ⅱ)當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AB的中點(diǎn)時(shí),求二面角D-CO-B的大小;
          (Ⅲ)當(dāng)CD與平面AOB所成角最大時(shí),求三棱錐C-OBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,∠OAB=
          π6
          ,斜邊AB=4,動(dòng)點(diǎn)D在斜邊AB上.
          (1)求證:平面COD⊥平面AOB;
          (2)當(dāng)D為AB的中點(diǎn)時(shí),求:異面直線AO與CD所成角大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
          3
          ,BD=CD=1,另一個(gè)側(cè)面是正三角形
          (1)求證:AD⊥BC
          (2)求二面角B-AC-D的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案