日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. f(x)=
          |x+1|,x≤-1
          x2,-1<x<2
          2x,x≥2
          ,那么f(f(-2))=
          1
          1
          ;如果f(a)=3,那么實(shí)數(shù)a=
          -4或
          3
          -4或
          3
          分析:f(x)=
          |x+1|,x≤-1
          x2,-1<x<2
          2x,x≥2
          ,知f(-2)=|-2+1|=1,由此能求出f(f(-2)).
          由f(a)=3,知:當(dāng)a≤-1時(shí),|a+1|=3;當(dāng)-1<a<2時(shí),a2=3;當(dāng)a≥2時(shí),2a=3.由此能求出實(shí)數(shù)a的值.
          解答:解:∵f(x)=
          |x+1|,x≤-1
          x2,-1<x<2
          2x,x≥2
          ,
          ∴f(-2)=|-2+1|=1,f(f(-2))=f(1)=12=1.
          ∵f(a)=3,
          ∴當(dāng)a≤-1時(shí),|a+1|=3,
          ∴a+1=3或a+1=-3,
          解得a=2(舍),或a=-4.
          當(dāng)-1<a<2時(shí),a2=3,解得a=-
          3
          (舍),或a=
          3

          當(dāng)a≥2時(shí),2a=3,a=
          3
          2
          ,不合題意.
          故實(shí)數(shù)a的值為-4或
          3

          故答案為:-4或
          3
          點(diǎn)評(píng):本題考查分段函數(shù)的函數(shù)值的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)y=f(x)的定義域R上的奇函數(shù),滿(mǎn)足f(x-2)=-f(x),對(duì)一切x∈R都成立,又知當(dāng)-1≤x≤1時(shí),f(x)=x3,則下列四個(gè)命題
          ①f(x)是以4為周期的周期函數(shù);
          ②f(x)在[1,3]上的解析式f(x)=(2-x)3
          f(x)在點(diǎn)(
          3
          2
          ,f(
          3
          2
          ))
          處的切線(xiàn)方程為3x+4y-5=0;
          ④x=±1是函數(shù)f(x)圖象的對(duì)稱(chēng)軸.
          其中正確的是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(chēng)(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
          (1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(210);
          (2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k(2-x),求f(x)在區(qū)間[1,22n)(n∈N*)上的最大值與最小值;
          (3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由. ①f(2-n)與2-n+2(n∈N*);②f(x)與2x+2(x∈(2-n,21-n],n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          x
          -1,x>0
          2-|x|+1,x≤0.
          若關(guān)于x的方程f(x)+2x-k=0有且只有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案