日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四面體ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,BC=2,求以BC為棱、以面BCD和面BCA為面的二面角的大小.

          參考答案與解析:解:取BC的中點(diǎn)E,連結(jié)AE、DE,?

          AB=AC,

          AEBC.

          又∵△ABD≌△ACD,AB=AC,

          DB=DC.

          DEBC.

          ∴∠AED為二面角A-BC-D的平面角.

          又∵△ABC≌△DBC,且△ABC為以BC為底的等腰三角形,故△DBC也是以BC為底的等腰三角形,

          .

          又△ABD≌△BDC,

          AD=BC=2.

          在Rt△DEB中,,BE=1,

          ,

          同理.

          在△AED中,∵AE=DE=,AD=2,

          AD2=AE2+DE2.

          ∴∠AED=90°.

          ∴以面BCD和面BCA為面的二面角的大小為90°.

          主要考察知識(shí)點(diǎn):空間直線和平面

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四面體ABCD中,BC⊥面ACD,DA=DC,E、F分別為AB、AC的中點(diǎn).
          (1)求證:直線EF∥面BCD;
          (2)求證:面DEF⊥面ABC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
          2
          ,BD=2,DC=1
          ,且BD⊥DC,二面角A-BD-C大小為60°.
          (1)求證:平面ABC上平面BCD;
          (2)求直線CD與平面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四面體ABCD中,DA=DB=DC=1,且DA,DB,DC兩兩互相垂直,點(diǎn)O是△ABC的中心,將△DAO繞直線DO旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線DA與BC所成角的余弦值的取值范圍是( 。
          A、[0, 
          6
          3
          ]
          B、[0, 
          3
          2
          ]
          C、[0, 
          2
          2
          ]
          D、[0, 
          3
          3
          ]

          查看答案和解析>>

          同步練習(xí)冊(cè)答案