日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四面體ABCD中,BC⊥面ACD,DA=DC,E、F分別為AB、AC的中點(diǎn).
          (1)求證:直線EF∥面BCD;
          (2)求證:面DEF⊥面ABC.
          分析:(1)由三角形的中位線定理可得EF∥BC,再根據(jù)線面平行的判定定理即可證得結(jié)論.
          (2)要證面面垂直,根據(jù)判定定理在其中一個平面內(nèi)找一條直線垂直于另一個平面即可;根據(jù)題意可得BC⊥DF,DF⊥AC,
          于是得到DF⊥平面ABC.
          解答:證明:(1)∵E、F分別為AB、AC的中點(diǎn),∴EF∥BC.
          又∵BC?平面BCD,EF?平面BCD,
          ∴EF∥平面BCD.
          (2)∵DA=DC,點(diǎn)F為AC的中點(diǎn),
          ∴DF⊥AC,
          又∵BC⊥面ACD,DF?面ACD,∴BC⊥DF,
          又∵DF∩AC=F,
          ∴DF⊥平面ABC.
          又∵DF?平面DEF,
          ∴平面DEF⊥平面ABC.
          點(diǎn)評:本題考查了線面平行和面面垂直,理解判定定理和性質(zhì)定理是解決問題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
          2
          ,BD=2,DC=1
          ,且BD⊥DC,二面角A-BD-C大小為60°.
          (1)求證:平面ABC上平面BCD;
          (2)求直線CD與平面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四面體ABCD中,DA=DB=DC=1,且DA,DB,DC兩兩互相垂直,點(diǎn)O是△ABC的中心,將△DAO繞直線DO旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線DA與BC所成角的余弦值的取值范圍是(  )
          A、[0, 
          6
          3
          ]
          B、[0, 
          3
          2
          ]
          C、[0, 
          2
          2
          ]
          D、[0, 
          3
          3
          ]

          查看答案和解析>>

          同步練習(xí)冊答案