日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,橢圓的長軸長為,點(diǎn)、為橢圓上的三個點(diǎn),為橢圓的右端點(diǎn),過中心,且,

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)是橢圓上位于直線同側(cè)的兩個動點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

          (1);(2)詳見解析.

          解析試題分析:(1)利用題中條件先得出的值,然后利用條件,結(jié)合橢圓的對稱性得到點(diǎn)的坐標(biāo),然后將點(diǎn)的坐標(biāo)代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件
          得到直線的斜率直線的關(guān)系(互為相反數(shù)),然后設(shè)直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),注意到直線的斜率之間的關(guān)系得到點(diǎn)的坐標(biāo),最后再用斜率公式證明直線的斜率為定值.
          (1),,
          是等腰三角形,所以,
          點(diǎn)代入橢圓方程,求得,
          所以橢圓方程為
          (2)由題易得直線、斜率均存在,
          ,所以,
          設(shè)直線代入橢圓方程,
          化簡得,
          其一解為,另一解為,
          可求,
          代入得,,
          為定值.
          考點(diǎn):1.橢圓的方程;2.直線與橢圓的位置關(guān)系;3.兩點(diǎn)間連線的斜率

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)橢圓)的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知
          (1)求橢圓的離心率;
          (2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (12分)(2011•陜西)設(shè)橢圓C:過點(diǎn)(0,4),離心率為
          (Ⅰ)求C的方程;
          (Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左右頂點(diǎn)分別為,離心率
          (1)求橢圓的方程;
          (2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn)為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率為,過的左焦點(diǎn)的直線被圓截得的弦長為.
          (1)求橢圓的方程;
          (2)設(shè)的右焦點(diǎn)為,在圓上是否存在點(diǎn),滿足,若存在,指出有幾個這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
          第3小題滿分6分.
          已知橢圓過點(diǎn),兩焦點(diǎn)為,是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線與橢圓交于兩不同點(diǎn)、.
          (1)求橢圓C的方程;       
          (2) 當(dāng)時,求面積的最大值;
          (3) 若直線、、的斜率依次成等比數(shù)列,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1,C2的四個交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
          (1)當(dāng)直線l與y軸重合時,若S1=λS2,求λ的值;
          (2)當(dāng)λ變化時,是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知中心在原點(diǎn)的橢圓C: 的一個焦點(diǎn)為為橢圓C上一點(diǎn),△MOF2的面積為.
          (1)求橢圓C的方程;
          (2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點(diǎn),且以線段AB為直徑的圓恰好過原點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案