日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 請閱讀下列命題:

          ①直線y=kx+1與橢圓=1總有兩個交點;

          ②函數(shù)f(x)=2sin(3x-)的圖像可由函數(shù)f(x)=2sin3x按向量a=(-,0)平移得到;

          ③函數(shù)f(x)=|x2-2ax+b|一定是偶函數(shù);

          ④拋物線x=ay2(a≠0)的焦點坐標是(,0).

          回答以上4個命題中,真命題是_______________(寫出所有真命題的編號).

          ①④ 

          解析:此題是多項選擇題,涉及內(nèi)容較多,包括圓錐曲線、三角函數(shù)、函數(shù)的性質(zhì)等內(nèi)容.

          ①法一是根據(jù)直線y=kx+1過定點(0,1),點(0,1)在橢圓=1內(nèi)部,所以直線y=kx+1與橢圓=1恒有兩個公共點.

          法二根據(jù)方程組可得(2+k2)x2+2kx-3=0,

          由△=4k2+12(2+k2)=16k2+24>0可知,方程有兩根,即直線y=kx+1與橢圓=1恒有兩個公共點.

          ②設函數(shù)f(x)=2sin3x按a=(m,n)平移后得到y(tǒng)+n=2sin(3x+3m-),

          求得a=(,0).

          ③f(x)=|x2-2ax+b|  ∴f(-x)=|x2+2ax+b|

          ∵當a=0時,f(-x)=f(x),所以為偶函數(shù);

          當a≠0時,f(-x)≠f(x),所以不為偶函數(shù).

          ④x=ay2即y2=x,所以拋物線焦點坐標為(,0).

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:閱讀理解

          請閱讀下列材料:對命題“若兩個正實數(shù)a1,a2滿足a12+a22=1,那么a1+a2
          2
          .”證明如下:構造函數(shù)f(x)=(x-a12+(x-a22,因為對一切實數(shù)x,恒有f(x)≥0,又f(x)=2x2-2(a1+a2)x+1,從而得4(a1+a22-8≤0,所以a1+a2
          2
          .根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你可以構造函數(shù)g(x)=
           
          ,進一步能得到的結論為
           
          .(不必證明)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:022

          (2006江西九校模擬)請閱讀下列命題:

          A.直線與橢圓總有兩個交點;

          B.的圖象可由f(x)=2sin3x按向量平移得到;

          C.在R上連續(xù)的函數(shù)f(x)若是增函數(shù),則對于任意,均有,成立;

          D.拋物線(a0)的焦點坐標是(,0)

          以上4個命題中,真命題是________(按照原順序?qū)懗鏊姓婷}的代號)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          請閱讀下列命題:

          ① 直線y=kx+1與橢圓總有兩個交點;

          ② f(x)=2sin(3x-)的圖像可由f(x)=2sin3x按向量a=(-,0)平移得到;

          ③ 在R上連續(xù)的函數(shù)f(x)若是增函數(shù),則對于任意x0∈ R,均有(x0)>0成立;

          ④ 拋物線x=ay2(a≠0)的焦點坐標是(,0);

          以上4個命題中,真命題是____________(寫出所有真命題的編號).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年福建省高三模擬考試數(shù)學(理科)試題 題型:填空題

          請閱讀下列材料:對命題“若兩個正實數(shù)滿足,那么。”

          證明如下:構造函數(shù),因為對一切實數(shù),恒有,又,從而得,所以。根據(jù)上述證明方法,若個正實數(shù)滿足時,你可以構造函數(shù)         ,進一步能得到的結論為          。(不必證明)

           

          查看答案和解析>>

          同步練習冊答案