日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ail=aii="i" ;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
          (1)試寫出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
          (2)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;
          (3)數(shù)列{ bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數(shù))恰好成等差數(shù)列?若存在求出P,q,r的關(guān)系;若不存在,請說明理由.
           
          (1)bn+1-2 bn=2(2)bn =3×2n-1-2(3)不存在
          (1)bl=1,;b2=4;b3=10;b4=22;b5=46:
          可見:b2-2 bl=2;b3-2 b2=2;b4-2 b3=2;b5-2 b4=2
          猜測:bn+1-2 bn="2" (或bn+1="2" bn+2或bn+1- bn=3×2n-1)
          (2)由(1)
          所以{bn+2},是以b1+2=3為首項,2為公比的等比數(shù)列,
          ∴ bn+2=3×2n-1  ,即bn =3×2n-1-2。。-
          (注:若考慮,且不討論n=1,扣1分)
          (3)若數(shù)列{ bn }中存在不同的三項bp, bq, br(p,q,r∈N)恰好成等差數(shù)列,不妨設(shè)p>q>r,顯然,{ bn }是遞增數(shù)列,則2 bq= bp, + br
          即2×(3×2q-1-2)=(3×2p-1-2)+(3×2r-1-2),于是2×2q-r=2q-r+1
          由p,q,r∈N且p>q>r知,q-r≥1,p-r≥2
          ∴等式的左邊為偶數(shù),右邊為奇數(shù),不成立,故數(shù)列{bn}中不存在不同的三項bp,bq,br(p,q,r∈N)恰好成等差數(shù)列--
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知等差數(shù)列的公差,對任意,都有
          (I)求證:對任意,所有方程均有一個相同的實數(shù)根;
          (II)若,方程的另一不同根為,,求數(shù)列的前n項和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知數(shù)列滿足.
          (1)求數(shù)列的通項公式;
          (2)當(dāng)時,證明不等式:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題12分)在數(shù)列{an}中,a1=2,an+1="4" an-3n+1,n∈N*.
          (1)證明數(shù)列{an-n}是等比數(shù)列;(2)求數(shù)列{an}的前n項和Sn;(3)證明不等式Sn+1≤4Sn,對任意n∈N*皆成立。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          某公司決定給員工增加工資,提出了兩個方案,讓每位員工自由選擇其中一種.甲方案是:公司在每年年末給每位員工增資1000元;乙方案是每半年末給每位員工增資300元.某員工分別依兩種方案計算增資總額后得到下表:
          工作年限
          方案甲
          方案乙
          最終選擇
          1
          1000
          600
          方案甲
          2
          2000
          1200
          方案乙
          ≥3
           
           
          方案甲
          (說明:①方案的選擇應(yīng)以讓自己獲得更多增資為準. ②假定員工工作年限均為整數(shù).)
          (1)他這樣計算增資總額,結(jié)果對嗎?如果讓你選擇,你會怎樣選擇增資方案?說明你的理由;
          (2)若保持方案甲不變,而方案乙中每半年末的增資數(shù)改為a元,問:a為何值時,方案乙總比方案甲多增資?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知等差數(shù)列和正項等比數(shù)列,a7是b3和b7的等比中項.
          (1)求數(shù)列的通項公式;
          (2)若,求數(shù)列{}的前n項和Tn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知{an}是一個等差數(shù)列,且a2=1,a5=-5.(Ⅰ)求{an}的通項;(Ⅱ)求{an}前n項和Sn的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)正項數(shù)列的前項和為 ,且.
          (1)求數(shù)列的通項公式;                                    
          (2)是否存在等比數(shù)列,使對一切正整數(shù)都成立?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分13分)設(shè)數(shù)列的前項和為,且;數(shù)列為等差數(shù)列,且.(1)求數(shù)列的通項公式;
          (2)若為數(shù)列的前項和.求證:

          查看答案和解析>>

          同步練習(xí)冊答案