日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=lnx,g(x)=ax+ ﹣3(a∈R).
          (1)當(dāng)a=2時(shí),解關(guān)于x的方程g(ex)=0(其中e為自然對(duì)數(shù)的底數(shù));
          (2)求函數(shù)φ(x)=f(x)+g(x)的單調(diào)增區(qū)間;
          (3)當(dāng)a=1時(shí),記h(x)=f(x)g(x),是否存在整數(shù)λ,使得關(guān)于x的不等式2λ≥h(x)有解?若存在,請(qǐng)求出λ的最小值;若不存在,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986).

          【答案】
          (1)解:當(dāng)a=2時(shí),g(x)=0,可得x= 或1,

          g(ex)=0,可得ex= 或ex=1,

          ∴x=﹣ln2或0;


          (2)解:φ(x)=f(x)+g(x)=lnx+ax+ ﹣3,φ′(x)=

          ①a=0,φ′(x)= >0,函數(shù)的單調(diào)遞增區(qū)間是(0,+∞);

          ②a=1,φ′(x)= x>0,函數(shù)的單調(diào)遞增區(qū)間是(0,+∞);

          ③0<a<1,x= <0,函數(shù)的單調(diào)遞增區(qū)間是(0,+∞);

          ④a>1,x= >0,函數(shù)的單調(diào)遞增區(qū)間是( ,+∞);

          ⑤a<0,x= >0,函數(shù)的單調(diào)遞增區(qū)間是(0,


          (3)解:a=1,h(x)=(x﹣3)lnx,h′(x)=lnx﹣ +1,

          h″(x)= + >0恒成立,∴h′(x)在(0,+∞)上單調(diào)遞增,

          ∴存在x0,h′(x0)=0,即lnx0=﹣1+ ,

          h(x)在(0,x0)上單調(diào)遞減,(x0,+∞)上單調(diào)遞增,

          ∴h(x)min=h(x0)=﹣(x0+ )+6,

          ∵h(yuǎn)′(1)<0,h′(2)>0,∴x0∈(1,2),

          ∴h(x)不存在最小值,

          ∴不存在整數(shù)λ,使得關(guān)于x的不等式2λ≥h(x)有解


          【解析】(1)當(dāng)a=2時(shí),求出g(x)=0的解,即可解關(guān)于x的方程g(ex)=0(其中e為自然對(duì)數(shù)的底數(shù));(2)φ(x)=f(x)+g(x)=lnx+ax+ ﹣3,φ′(x)= ,分類討論,利用導(dǎo)數(shù)的正負(fù),求函數(shù)φ(x)=f(x)+g(x)的單調(diào)增區(qū)間;(3)判斷h(x)不存在最小值,即可得出結(jié)論.
          【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點(diǎn),直線m是以P為中點(diǎn)的弦所在直線,直線l的方程為ax+by=r2 , 那么(
          A.m∥l,且l與圓相交
          B.m⊥l,且l與圓相切
          C.m∥l,且l與圓相離
          D.m⊥l,且l與圓相離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù) 為定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù).
          (1)求實(shí)數(shù)a的值;
          (2)判斷函數(shù)f(x)在區(qū)間(a+1,+∞)上的單調(diào)性,并用定義法證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知從“神十”飛船帶回的某種植物種子每粒成功發(fā)芽的概率都為 ,某植物研究所進(jìn)行該種子的發(fā)芽實(shí)驗(yàn),每次實(shí)驗(yàn)種一粒種子,每次實(shí)驗(yàn)結(jié)果相互獨(dú)立,假定某次實(shí)驗(yàn)種子發(fā)芽則稱該次實(shí)驗(yàn)是成功的,如果種子沒(méi)有發(fā)芽,則稱該次實(shí)驗(yàn)是失敗的.若該研究所共進(jìn)行四次實(shí)驗(yàn),設(shè)ξ表示四次實(shí)驗(yàn)結(jié)束時(shí)實(shí)驗(yàn)成功的次數(shù)與失敗的次數(shù)之差的絕對(duì)值. (Ⅰ)求隨機(jī)變量ξ的分布列及ξ的數(shù)學(xué)期望E(ξ);
          (Ⅱ)記“不等式ξx2﹣ξx+1>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,A、B、C所對(duì)的邊分別為a、b、c,若a2+b2+2c2=8,則△ABC面積的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,D、E分別是△ABC的邊BC的三等分點(diǎn),設(shè) =m, =n,∠BAC=

          (1)用 、 分別表示 ,
          (2)若 =15,| |=3 ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=sin+cos , x∈R.
          (1)求函數(shù)f(x)的最小正周期,并求函數(shù)f(x)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;
          (2)函數(shù)f(x)=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換可以得到函數(shù)f(x)的圖象.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)已知?jiǎng)又本l過(guò)點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
          (1)證明:f(x)≥2;
          (2)若f(3)<5,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案