已知橢圓:
的面積為π
,
包含于平面區(qū)域
內(nèi),向平面區(qū)域
內(nèi)隨機(jī)投一點(diǎn)Q,點(diǎn)Q落在橢圓內(nèi)的概率為
.
(Ⅰ)試求橢圓的方程;
(Ⅱ)若斜率為
的直線
與橢圓
交于
、
兩點(diǎn),點(diǎn)
為橢圓
上一點(diǎn),
記直線的斜率為
,直線
的斜率為
,試問:
是否為定值?請證明你的結(jié)論.
(Ⅰ) (Ⅱ)
為定值0
(Ⅰ)平面區(qū)域是一個矩形區(qū)域,如圖所示. ………2分
依題意及幾何概型,可得, ……………………3分
即 . 因?yàn)椤?img width=135 height=25 src="http://thumb.zyjl.cn/pic1/1899/sx/162/414362.gif" >,
所以, .
………………5分
所以,橢圓的方程為
……6分
(Ⅱ)設(shè)直線的方程為:
,
聯(lián)立直線的方程與橢圓方程得:
(1)代入(2)得:
化簡得:………(3) ……………8分
當(dāng)時,即,
也即,時,直線
與橢圓有兩交點(diǎn),
由韋達(dá)定理得:, ………………10分
所以,,
則
……………13分
所以,為定值。 ……………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
x2 |
(a-2)2 |
y2 |
b2-1 |
|OP| |
|OM| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
3 |
π |
4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com