日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

          1)證明:當(dāng)時, ;

          2)設(shè)為整數(shù),函數(shù)有兩個零點,求的最小值.

          【答案】(1)見解析;(2)1

          【解析】試題分析:(1)要證明不等式成立,構(gòu)造設(shè),求導(dǎo),利用單調(diào)性即可證明,從而證明整個不等式組(2)結(jié)合(1)問結(jié)論得當(dāng)時無零點,當(dāng)時,利用導(dǎo)數(shù)求得其單調(diào)性當(dāng)時, , 單調(diào)遞減,當(dāng)時, , 單調(diào)遞增,然后求得,從而得到兩個零點

          解析(1)證明:設(shè),則,令,得

          當(dāng)時, , 單調(diào)遞減

          當(dāng)時, , 單調(diào)遞增

          ,當(dāng)且僅當(dāng)時取等號,∴ 對任意

          ∴當(dāng)時, ,∴當(dāng)時,

          ∴當(dāng)時,

          (2)函數(shù)的定義域為

          當(dāng)時,由(Ⅰ)知, ,故無零點

          當(dāng)時, ,

          , ,且上的增函數(shù)

          有唯一的零點,當(dāng)時, , 單調(diào)遞減

          當(dāng)時, , 單調(diào)遞增

          的最小值為

          的零點知, ,于是

          的最小值,由知, ,即

          ,

          上有一個零點,在上有一個零點

          有兩個零點,綜上所述, 的最小值為1.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

          經(jīng)常使用

          偶爾或不用

          合計

          30歲及以下

          70

          30

          100

          30歲以上

          60

          40

          100

          合計

          130

          70

          200

          (1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

          (2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

          (i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

          (ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

          參考公式: ,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面是邊長為的菱形, .

          (1)求證:平面平面;

          (2)若,求銳角二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

          A. , 依次成公比為2的等比數(shù)列,且

          B. , , 依次成公比為2的等比數(shù)列,且

          C. , , 依次成公比為的等比數(shù)列,且

          D. , , 依次成公比為的等比數(shù)列,且

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:

          (參考公式和計算結(jié)果:

          , , ,

          (1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計的預(yù)報值.

          (2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號并計算出的, 的值( 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

          (3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】小明設(shè)置的手機(jī)開機(jī)密碼若連續(xù)3次輸入錯誤,則手機(jī)被鎖定,5分鐘后,方可重新輸入

          某日,小明忘記了開機(jī)密碼,但可以確定正確的密碼是他常用的4個密碼之一,于是,他

          決定逐個(不重復(fù))進(jìn)行嘗試

          1)求手機(jī)被鎖定的概率;

          2)設(shè)第次輸入后能成功開機(jī),求的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是雙曲線的左右焦點,以為直徑的圓與雙曲線的一條漸近線交于點,與雙曲線交于點,且均在第一象限,當(dāng)直線時,雙曲線的離心率為,若函數(shù),則()

          A. 1 B. C. 2 D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知m0,p(x2)(x6)0,q2mx2m.

          (1)pq成立的必要不充分條件,求實數(shù)m的取值范圍;

          (2) 成立的充分不必要條件求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點為,過且與軸垂直的弦長為3.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)過作直線與橢圓交于兩點,問:在軸上是否存在點,使為定值,若存在,請求出點坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案