日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE,EFOF,考慮到小區(qū)整體規(guī)劃,要求OAB的中點,點E在邊BC上,點F在邊AD上,且,如圖所示.

          (Ⅰ)設(shè),試將的周長l表示成的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;

          (Ⅱ)經(jīng)核算,三條路每米鋪設(shè)費用均為400元,試問如何設(shè)計才能使鋪路的總費用最低?并求出最低總費用.

          【答案】(Ⅰ)見解析;()見解析.

          【解析】

          (Ⅰ)根據(jù)三角函數(shù)定義及勾股定理,即可表示出EF長度,進而用α表示出周長。根據(jù)點E、F的極限位置,判斷出角的大小范圍得到定義域。

          (Ⅱ)利用三角函數(shù)換元,將周長轉(zhuǎn)化為關(guān)于t的函數(shù),結(jié)合角α的范圍求得t的范圍,進而得到l的范圍,即為費用最低時的長度。

          (Ⅰ)∵在中,,

          中,,

          ,

          .

          當(dāng)點F在點D時,這時角最小,求得此時;

          EC點時,這時角最大,求得此時.故此函數(shù)的定義域為

          (Ⅱ)由題意知,要求鋪路總費用最低,只要求的周長l最小值即可.

          由()得,,

          設(shè),則,

          ,得,,

          從而,當(dāng),即BE=25時,

          所以當(dāng) 米時,鋪路總費用最低,最低總費用為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某投資人欲將5百萬元獎金投入甲、乙兩種理財產(chǎn)品,根據(jù)銀行預(yù)測,甲、乙兩種理財產(chǎn)品的收益與投入獎金的關(guān)系式分別為,其中為常數(shù)且.設(shè)對乙種產(chǎn)品投入獎金百萬元,其中

          1)當(dāng)時,如何進行投資才能使得總收益最大;(總收益

          2)銀行為了吸儲,考慮到投資人的收益,無論投資人獎金如何分配,要使得總收益不低于,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形中,

          1)若為等邊三角形,且, 的中點,求;

          2)若, , ,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2﹣|x|+2a﹣1(a為實常數(shù)).

          (1)若a=1,求f(x)=3的解;

          (2)求f(x)在區(qū)間[1,2]的最小值為g(a).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)滿足

          (1)求的值;

          (2)判斷函數(shù)的奇偶性,并說明理由;

          (3)若b=1,且函數(shù)上是單調(diào)增函數(shù),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x)的定義域為R,且滿足

          (1)f(1)=3

          (2)對于任意的,總有

          (3)對于任意的

          (I)求f(0)及f(-1)的值

          (II)求證:函數(shù)y=f(x)-1為奇函數(shù)

          (III)若,求實數(shù)m的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.

          (1)證明PA∥平面BDE;
          (2)證明:DE⊥面PBC;
          (3)求直線AB與平面PBC所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數(shù)a的取值范圍為(
          A.[﹣ , ]
          B.[﹣ ]
          C.[﹣ , ]
          D.[﹣ , ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《張丘建算經(jīng)》是公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有(
          A.0.55尺
          B.0.53尺
          C.0.52尺
          D.0.5尺

          查看答案和解析>>

          同步練習(xí)冊答案